• Title/Summary/Keyword: ovarian cancer cells

Search Result 179, Processing Time 0.025 seconds

A Case of Ovarian Serous Cystadenocarcinoma Diagnosed by Cervicovaginal Smear (자궁경부.질도말로 진단된 난소의 장액성 낭성암종 1예)

  • Park, Hye-Rim;Nam, Joo-Hyun;Park, Young-Euy
    • The Korean Journal of Cytopathology
    • /
    • v.3 no.2
    • /
    • pp.104-110
    • /
    • 1992
  • Although there have been a few reports of cases in which cancer cells of extrauterine origin were observed in vaginal smears, such findings are relatively uncommon. We recently experienced a case of ovarian serous cystadenocarcinoma diagnosed by cervicovaginal smear in a 56-year-old woman in routine work-up of carcinoma peritonei. The cellular features were several scattered cellular clusters of adenocarcinoma cells in clear background without tumor diathesis. Psammoma body was not present. Exploratory laparotomy confirmed the diagnosis of bilateral ovarian serous cystadenocarcinoma with multiple metastases.

  • PDF

TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis

  • Kim, Dae Kyoung;Kim, Yu Na;Kim, Ye Eun;Lee, Seo Yul;Shin, Min Joo;Do, Eun Kyoung;Choi, Kyung-Un;Kim, Seung-Chul;Kim, Ki-Hyung;Suh, Dong-Soo;Song, Parkyong;Kim, Jae Ho
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.481-492
    • /
    • 2021
  • Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.

The RUNX1 Enhancer Element eR1: A Versatile Marker for Adult Stem Cells

  • Chuang, Linda Shyue Huey;Osato, Motomi;Ito, Yoshiaki
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.121-125
    • /
    • 2020
  • The identification of adult stem cells is challenging because of the heterogeneity and plasticity of stem cells in different organs. Within the same tissue, stem cells may be highly proliferative, or maintained in a quiescent state and only to be activated after tissue damage. Although various stem cell markers have been successfully identified, there is no universal stem cell marker, which is exclusively expressed in all stem cells. Here, we discuss the roles of master developmental regulator RUNX1 in stem cells and the development of a 270 base pair fragment of the Runx1 enhancer (eR1) for use as stem cell marker. Using eR1 to identify stem cells offers a distinct advantage over gene promoters, which might not be expressed exclusively in stem cells. Moreover, RUNX1 has been strongly implicated in various cancer types, such as leukemia, breast, esophageal, prostate, oral, skin, and ovarian cancers-it has been suggested that RUNX1 dysfunction promotes stem cell dysfunction and proliferation. As tissue stem cells are potential candidates for cancer cells-of-origin and cancer stem cells, we will also discuss the use of eR1 to target oncogenic gene manipulations in stem cells and to track subsequent neoplastic changes.

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Reactive Oxygen Species Mediates Lysophosphatidic Acid-induced Migration of SKOV-3 Ovarian Cancer Cells (SKOV-3 난소암 세포주에서 lysophosphatidic acid 유도 세포의 이동에 있어 활성산소의 역할)

  • Kim, Eun Kyoung;Lee, Hye Sun;Ha, Hong Koo;Yun, Sung Ji;Ha, Jung Min;Kim, Young Whan;Jin, In Hye;Shin, Hwa Kyoung;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1621-1627
    • /
    • 2012
  • Cell motility plays an essential role in many physiological responses, such as development, immune reaction, and angiogenesis. In the present study, we showed that lysophosphatidic acid (LPA) modulates cancer cell migration by regulation of generation of reactive oxygen species (ROS). Stimulation of SKOV-3 ovarian cancer cells with LPA strongly promoted migration. but this migration was completely blocked by pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Inhibition of the ERK pathway had no effect on migration. Stimulation of SKOV-3 ovarian cancer cells with LPA significantly induced the generation of ROS in a time-dependent manner. LPA-induced generation of ROS was significantly blocked by pharmacological inhibition of PI3K or Akt, but inhibition of the ERK signaling pathway had little effect. LPA-induced generation of ROS was blocked by pretreatment of SKOV-3 ovarian cancer cells with an NADPH oxidase inhibitor, whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I had no effect. Scavenging of ROS by N-acetylcysteine completely blocked LPA-induced migration of SKOV-3 ovarian cancer cells. Inhibition of NADPH oxidase blocked LPA-induced migration whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I did not affect LPA-induced migration of SKOV-3 ovarian cancer cells. Given these results, we suggest that LPA induces ROS generation through the PI3K/Akt/NADPH oxidase signaling axis, thereby regulating cancer cell migration.

Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system

  • Kim, Soo-Min;Hwang, Kyung-A;Choi, Kyung-Chul
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.557-562
    • /
    • 2018
  • Reactive oxygen species (ROS) are major sources of cellular oxidative stress. Specifically, cancer cells harbor genetic alterations that promote a continuous and elevated production of ROS. While such oxidative stress conditions could be harmful to normal cells, they facilitate cancer cell growth in multiple ways by causing DNA damage and genomic instability, and ultimately by reprogramming cancer cell metabolism. This review provides up to date findings regarding the roles of ROS generation induced by diverse biological molecules and chemicals in representative women's cancer. Specifically, we describe the cellular signaling pathways that regulate direct or indirect interactions between ROS homeostasis and metabolism within female genital cancer cells.

Chemosensitization of Human Ovarian Carcinoma Cells by a Recombinant Adenoviral Vector Containing L-plastin Promoter Fused to Cytosine Deaminase Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.143-149
    • /
    • 2005
  • We have demonstrated previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase (CD) gene is driven by the tumor-specific L-plastin promoter. The object of this study was to evaluate the efficacy of AdLPCD together with 5-fluorocytosine (5-FC) in suppression of the growth of established human tumor cells of ovary, Consistent with the knowledge that infection of OVCAR-3 cells with AdLPCD resulted in expression of a functional intracellular CD enzyme capable of converting 5-FC to 5-fluorouracil (5-FU) (Chung and Deisseroth, 2004), statistically significant differences in cytotoxicity were observed when AdLPCD infected cells were also exposed to 5-FC for 6 days (p=0.05), 9 days (p<0.0005) and 12 days (p<0.005), compared to 5-FC exposure alone, These results indicate that the CD gene delivered by adenoviral vector could efficiently sensitize OVCAR-3, otherwise non-toxic 5-FC. On the other hand, SKOV-3 cells, an ovarian carcinoma cell line, were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The results of present study suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

Induction of Caspase-3 Dependent Apoptosis in Human Ovarian Cancer SK-OV-3 Cells by Genistein

  • Choi, Eun-Jeong;Kim, Tae-Hee;Kim, Gun-Hee;Chee, Kew-Mahn
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.216-218
    • /
    • 2008
  • The present study was designed to determine how the phytochemical genistein activates caspase-3 to cause cell cycle arrest and apoptosis. When human ovarian cancer SK-OV-3 cells were treated with $200\;{\mu}M$ genistein for 24 hr, cell growth decreased significantly (p<0.05). Conversely, genistein treatment significantly increased cytotoxicity (measured as lactate dehydrogenase release) under the same conditions (p<0.05). To elucidate the mechanism behind the induction of apoptosis by genistein, we studied the cell cycle and caspase-3 activation. When cells were treated with genistein, the population of cells in sub-G1 phase increased by 44.2% compared to untreated cells. Genistein caused decrease in precursor caspase-3, increase in cleaved caspase-3 and a significant increase in caspase-3 activity (p<0.05). Therefore, genistein may induce apoptosis via caspase-3 activation. However, high-dose genistein treatment must be viewed with caution because of its potential cytotoxicity.

Mutual Activities of IEX-1 and MCL-1 on the Apoptosis of Ovarian Cancer Cells (난소암 세포에서 IEX-1과 MCL-1 단백질들의 세포 사멸 기능에 관한 상호작용)

  • Yoon, Seong-Min;Na, Soon-Young;Kim, Hong-Man;Lee, Kang-Seok;Bae, Jee-Hyeon
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Apoptosis is a crucial mechanism for the proper regulation of homeostasis. BCL-2 family proteins are key molecules which control cellular survival and apoptosis. MCL-1 (myeloid cell leukemia-1) is a pro-survival member of BCL-2 family that promotes the survival of cells, and is highly expressed in diverse cancers including ovarian cancer, leukemia, and cervical cancer. Previously we identified IEX-1 (immediate early response gene X-1) as a binding partner of MCL-1. In the present study, we demonstrated that overexpression of IEX-1 induced apoptosis of ovarian cancer cells. Moreover, IEX-1 significantly attenuated the pro-survival function of MCL-1 in these cells. Also, IEX-1-induced cell death activity was able to be modulated by changes in the expression level of MCL-1. Thus, these results suggest that both IEX-1 and MCL-1 modulate each other's function controlling cellular survival and death and the inhibitory activity of IEX-1 toward MCL-1 may be applied for the development of chemotherapeutics.