• Title/Summary/Keyword: output factor

Search Result 1,568, Processing Time 0.035 seconds

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

Analysis of Input Characteristic in the Rectifier for Output Filter with Unbalanced Supply Voltages (불평형 전원전압을 갖는 정류시스템에서 출력필터에 따른 입력 특성 분석)

  • Kang, Su-Heon;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.195-202
    • /
    • 2005
  • The rectifier characteristics and the quality of the input current worsens with the increase of unbalances or harmonics of the supply voltages. Rectifier input current harmonics interfere with proper power system operation, reduce rectifier power factor, and limit the power available from a given source. It is of importance to select appropriately the rectifier's output filter inductance to determine the rectifier input current waveform, the input current harmonics, and the power factor. This paper presents a quantitative analysis of single and three phase rectifier input current harmonics, total harmonic distortion, and power factor as a function of the output filter inductance under balanced and unbalanced conditions. Also, its performance under the supply voltage including harmonics be investigated. These results provide a reference for selecting reasonable rectifier's output filter inductance for given harmonics or power factor criterion.

  • PDF

Comparison and analysis of control algorithms of single-phase AC/DC parallel converters (단상 AC/DC 병렬 컨버터 제어 알고리즘의 비교, 분석)

  • 이강희
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.290-293
    • /
    • 2000
  • In this paper the algorithm which controls output voltage and power factor independently and the algorithm which controls output voltage with fixed unity power factor are compared and analyzed. These algorithms are applied to single-phase AC/DC parallel are applied to single-phase AC/DC parallel converters for a high speed train system. The control characteristic of the algorithms are compared and analyzed with respect to the output voltage and input power factor when system parameters vary.

  • PDF

A Study on Measurement of Output Dose in X-ray Unit (X-선장치에서 출력선량 측정에 관한 연구)

  • Kim, Jong Eon;Lee, Sang Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.289-294
    • /
    • 2020
  • In order to control the quality of X-ray images and patient exposure, it is necessary to document the output dose(air absorption dose(mGy)) output from the X-ray unit from the measurement. The purpose of this study is to find an equation that can calculate the output dose from the measurement of the output dose and output factor(Of) of the X-ray Unit. The output dose and output factors of the X-beam irradiated from the X-ray unit were measured using an XR multi-detector. The output dose calculation formula was obtained by fitting the measured output dose divided by the tube current-exposure time product(mAs) and the set tube voltage with Allometric1. The final output dose calculation formula was obtained by multiplying this formula with the output factor. It is considered that the obtained final output dose calculation formula will be useful for all tube voltages, tube currents, exposure times, field sizes, and distances.

Step-One in Pre-regulator Boost Power-Factor-Correction Converter Design

  • Orabi, Mohamed;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.18-27
    • /
    • 2004
  • The output storage capacitor of the PFC converters is commonly designed for the selected hold-up time or the allowed output ripple voltage percentage. Nevertheless, this output capacitor is a main contribution factor to the PFC system stability. Moreover, seeking for a minimum output storage capacitor that assures the PFC desired operation under all condition, and providing the advantage of a small size and low cost is the main interesting target for engineering. Therefore, in this issue the design steps of the PFC converter have been discussed depending on three choices, output ripple, hold-up time, and stability. It is cleared that any design must take the minimum required storage capacitor for stability prospective as step-l in deign, then apply for any other specification like hold-up time or ripple percentage.

Analysis of Control Error Factors of a Thermal Output Experiment for Radiant Heating Panels (복사난방패널 방열량실험의 제어오차요인 분석)

  • Shin, Dae-Uk
    • Land and Housing Review
    • /
    • v.9 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • As a radiant heating panel gets more popularity, the need to study on evaluation method of thermal output of the panel also becomes increasing. Generally, the chamber using method is applied to evaluate the thermal output through an experiment. However, the chamber using method cannot be used due to the limitations on space and cost. EN1264 addresses the test equipment to evaluate the thermal output by using simpler experimental setup, and introduces application method in detail. However, there is not enough description of control methods to meet the experiment condition, and it is difficult to meet this when practical experiment. Therefore, this paper analysed the control error factors of when the thermal output experiment is performed. When EN1264 method is applied to evaluate the thermal output of the radiant floor heating panel, the error factor which is caused by the characteristic of test equipment cannot be removed by the control methods of chamber using method. In addition, the error factor can be occurred at the element which is located out of the control system. These possible error factors are defined as the characteristic error factors.

Quality Verification for Respiratory Gated Proton Therapy (호흡동조 양성자치료의 Quality Verification)

  • Kim, Eun Sook;Jang, Yo Jong;Park, Ji Yeon;Kang, Dong Yun;Yeom, Doo Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • Purpose: To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. Materials and Methods: The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. Results: The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 $g/cm^2$ and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 $g/cm^2$. And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 $g/cm^2$, that of SOBP were 0.010, -0.016, -0.004 $g/cm^2$ and that of output factor were 0.001, -0.001, 0.002 cGy/MU. Conclusion: It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this.

  • PDF

Research on Grid Side Power Factor of Unity Compensation Method for Matrix Converters

  • Xia, Yihui;Zhang, Xiaofeng;Ye, Zhihao;Qiao, Mingzhong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1380-1392
    • /
    • 2019
  • Input filters are very important to matrix converters (MCs). They are used to improve grid side current waveform quality and to reduce the input voltage distortion supplied to the grid side. Due to the effects of the input filter and the output power, the grid side power factor (PF) is not at unity when the input power factor angle is zero. In this paper, the displacement angle between the grid side phase current and the phase voltage affected by the input filter parameters and output power is analyzed. Based on this, a new grid side PF unity compensation method implemented in the indirect space vector pulse width modulation (ISVPWM) method is presented, which has a larger compensation angle than the traditional compensation method, showing a higher grid side PF at unity in a wide output power range. Simulation and experimental results verify that the analysis of the displacement angle between the grid side phase current and the phase voltage affected by the input filter and output power is right and that the proposed compensation method has a better grid side PF at unity.

Digital Control of an AC/DC Converter using the Power Balance Control Technique with Average Output Voltage Measurement

  • Wisutmetheekorn, Pisit;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2012
  • This paper presents a method for the digital control of a high power factor AC/DC converter employing the power balance control technique to achieve a fast response of the output voltage control. To avoid the effects of an output voltage ripple in the voltage control loop, the average output voltage is sampled and used as a feedback signal for the output voltage controller. The proposed control technique was verified by simulations using MATLAB/Simulink and its implementation was realized by a dsPIC30F4011 digital signal processor to control a CUK topology AC/DC converter with a 48V output voltage and a 250 W output power. The experimental results agree with the simulation results. The proposed control technique achieves a fast transient response with a lower line current distortion than is achieved when using a conventional proportional-integral controller and the power balance control technique with the conventional sampling method.

A Study on the Effect of Field Shaping on Dose Distribution of Electron Beams (전자선의 선량분포에 있어서 Field Shaping의 효과에 관한 연구)

  • Kang, Wee-Saing;Cho, Moon-June
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.165-172
    • /
    • 1986
  • In electron therapy, lead cutout or low-melting alloy block is used for shaping the field. Material for shaping electron field affects the output factor as wet 1 as the collimation system. The authors measured the output factors of electron beams for shaped fields from Clinac-18 using ionization chamber of Farmer type in polystyrene phantom. They analyzed the parameters that affect the output factors. The output factors of electron beams depend on the incident energy, collimation system and size of shaped field. For shaped field the variation of output factor for the field size (A/P) has appearence of a smooth curve for all energy and all applicator collimator combination. The output factors for open field deviate from the curves for shaped fields. An output factor for a given field can be calculated by equivalent field method such as A/P method, if a combination of applicator and collimator is fixed.

  • PDF