• Title/Summary/Keyword: outlet spacing

Search Result 9, Processing Time 0.026 seconds

Design of Road Surface Drainage Facilities Based on Varied Flow Analysis (부등류 해석을 기반으로 한 노면배수시설 설계)

  • Ku, Hye-Jin;Kim, Jin-Soo;Park, Hyung-Seop;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1173-1185
    • /
    • 2008
  • The design methods of the road surface drainage facilities were compared for the improvement of design method. We have developed four computational design models classified by the methods to determine the duration of design rainfall and to analyze the flow of a linear drainage channel. The critical duration was determined by assuming the critical duration to be 10 minutes or by finding the duration of design storm being similar to the travel time of flow by trial and error. The flow of a linear drainage channel was analyzed as the uniform flow or the varied flow. The design models were applied to the artificial road surface drainage facilities with various channel slopes and road shoulder slopes. If the rainfall intensity of the 10 minutes duration was applied, the outlet spacing obtained from the design based on the varied flow analysis was larger than the uniform flow analysis only when the channel slope and the road shoulder slope was small. On the other hands, if the duration of design rainfall was determined by calculating the travel time, the varied flow analysis brought about larger outlet spacing than the uniform analysis for all conditions. However, the model of the critical duration concept and the varied flow analysis resulted in smaller outlet spacing than the current design method employing the rainfall of 10 minutes duration and the uniform flow analysis.

Deposition Properties of Dredged Materials of Kun-Jang Industrial Complex (군산지역 준설토의 퇴적특성)

  • 한영철;송정락
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.61-64
    • /
    • 1992
  • Recently, by the lack of fill material, the dredg and fill(hydraulic fill) method is commonly used in reclamation projects. Hydraulic fill method dredges the soil and send it with water through the transportation pipe to the site. The intial state of the hydraulic fill material is accordingly the mixture of water and soil skeleton which settles with time forming a new soil layer. The properties of new soil layer is governed the size of the soil skeleton, the flow velocity of mixing water, salt concentration, the distance from the discharge pipe outlet, and other dredging conditions when settling process occur. In this study, the effects of gradation of derdged soil on the deposition properties (with emphasis on the optimum spacing of the discharge pipes) was investigated by field test. It was found that the soft fine graind soil was forme at 350m from the discharge pipe outlet when the dredged material was classified as CL, while the soft fine grained soil was not formed even at the distance farther than 400m from the diacharge pipe outlet when the dredged material was classified as SM.

  • PDF

Performance Analysis with Change in Design Parameters of $CO_2$ Heat Pump Gas Cooler ($CO_2$ 히트펌프 가스쿨러의 설계변수 변화에 따른 성능해석)

  • Chang, Young-Soo;Kim, Min-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.639-644
    • /
    • 2006
  • The outlet temperature of gas cooler has a great effect on the efficiency of carbon dioxide heat pump system. In order to obtain a small approach temperature difference at gas cooler, near-counter flow type heat exchanger has been proposed, and larger heat transfer area is demanded. The optimum design of gas cooler involving the analysis of trade-offs between heat transfer performance and cost is desirable. In this study, the effects of geometric parameters, such as the circuit arrangement, tube diameter, transverse tube spacing, longitudinal tube spacing and the number of tube rows and fin spacing on the performance of heat transfer were investigated using the developed model. This study suggested various simulation results for optimum designs of gas cooler.

  • PDF

Development of Evaluation of the Locally Made Propeller Type Mistblower

  • Kwangwaropas, Mongkol;Onkong, Narong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.488-499
    • /
    • 1996
  • A propeller type mistblower was designed and manufactured. The machine consisted of a 770 millimeters diameter propeller driven by the power take off of a tractor. It delivered 26,400 cubic meters of air per hour and has the outlet speed about 180 kilometers per hour. Spray liquid was injected at 30 bars pressure through hollow cone type nozzles which were located around the air outlet of the machine bya poston type pump. Power consumption of the machine was found to be 12.46 kilowatts and the effective forward travel speed was about 2.7 kilometers per hour. Upon spraying mango trees, it was shown that the density of spray partices was about 100 microns and consumed 3.12 liters per tree. Working speed in 6 meters row spacing mango orchard was about one hectare per hour.

  • PDF

An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing (배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구)

  • Lee, Yuk-Hyeong;Kim, Sun-Yeong;Park, Myeong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.

Heat transfer and flow characteristics of sweeping jet issued from rectangular nozzle with thin plate (박판이 부착된 사각노즐에서 분사되는 Sweeping jet의 유동 및 열전달 특성)

  • Kim, Donguk;Jung, Jae Hoon;Seo, Hyunduk;Kim, Hyun Dong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.58-66
    • /
    • 2019
  • This study investigated heat transfer and flow characteristics of a sweeping jet issued from a rectangular nozzle with a thin plate. A thin vertical aluminum plate was attached on outlet of fluidic oscillator to increase velocity of central area with Coanda effect and enhance heat transfer performance. From visualization and PIV experiments, sweeping jet with a thin plate has larger velocity distribution in center region than that of the normal sweeping jet while oscillating frequency is similar as the normal one. Thermographic phosphor thermometry method was used to visualize the temperature field and Nu distribution of plate with impinging sweeping jet with thin plate. Four Reynolds numbers and three jet-to-wall distances were selected as parameters. It is found that heat transfer performance in the low jet-to-wall spacing was enhanced as the cooled area was expanded. However, when the jet-to-wall spacing became greater than 8dh, heat transfer performance became similar due to reduced impinging velocity.

NEAR-FIELD DILUTION OF ROSETTE TYPE MULTIPORT WASTEWATER DIFFUSERS

  • Seo, Il-Won;Yeo, Hong-Koo
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.93-111
    • /
    • 2002
  • In this paper, mixing characteristics and dilution of the merging buoyant discharges from array of multiple jets has been extensively studied in the hydraulic model experiments. New equations for dilution, which include the merging effects correctly, were derived. Experiments were constructed in a 20-m long, 4.9-m wide and 0.6-m deep flume, and the model diffuser was manufactured to indicate the typical characteristics of the existing ocean wastewater outfall in South Korea. Buoyant discharge from the diffuser was reproduced using heated water. Water temperature was measured using CC-Type thermocouple sensors, which were connected to a 40-channel data logger. Experimental results show that merging between ports in a particular riser is dependent upon the discharge densimetric Froude number, whereas merging between two ports which are facing each other at 90$\circ$ at the adjacent risers is dependent upon the discharge densimetric Froude number and distance from the port and port spacing. Centerline dilution increase with distance from the port outlet until two plumes has merged. However, after merging occurs, increase of the centerline dilution almost stops. Further distance from the position where merging occurs, centerline dilution increases again.

  • PDF

Study on the frequency of self-excited pulse jet

  • Wang, Jian;Li, Jiangyun;Guan, Kai;Ma, Tianyou
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.206-212
    • /
    • 2013
  • Self-excited pulse jet is a specific nozzle with a closed chamber which can change a continuous jet into a pulse one. Energy of the pulse jet can be output not only unevenly but also with multifrequency. With the peak pressure of pulse jet, the hitting power would be 2~2.5 times higher than that of continuous jet. In order to reveal the correlation between the self-excited pulse frequency and nozzle diameter ratio, nozzle spacing and operating pressure, the model of 3D unsteady cavitation model has been used. We found that with the same nozzle structure parameters and the different operating pressure, the self-excited frequency and the width of peak crest are different, but the wave profiles are similar. With FFT, we also found that the less bandwidth of amplitude in low frequency range will lead to the wider wave crest of outlet velocity in its time domain, and the larger force of the strike will be gained. By studying the St of self-excite nozzle, not only the frequency of a certain nozzle can be predicted, but also a nozzle structure with a certain frequency can be designed.

A Numerical Study on a Supersonic Turbine Performance Characteristics with Different Nozzle-Rotor Axial Gap Spacings (노즐-로터 축간극 거리에 따른 초음속 터빈 내의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Choi, Byoung-ik;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, 3-dimensional URANS simulation was performed to analyze the effect of the nozzle-rotor axial gap spacing of a supersonic impulse turbine on turbine performance. The computations were conducted for four different axial gap cases corresponding to about 6%, 10%, 20% and 30% of the blade height, respectively. The results show a good agreement with previous studies and the turbine efficiency decreases drastically in certain range. It is examined that the turbine performance characteristics could change depending on the influence of leading edge shock to the nozzle outlet. It is also found that the entropy rise distributions along the span differ from each other.