• Title/Summary/Keyword: outflow discharge

Search Result 124, Processing Time 0.035 seconds

Experimental Study on the Inflow and Outflow Structures of Hwasun Flood Control Reservoir (화순 홍수조절지의 유입유출 구조물에 대한 수리모형실험 연구)

  • Lee, Sang-Hwa;Jin, Kwang-Ho;Ryu, Jong-Hyun;Kim, Soo-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.675-684
    • /
    • 2012
  • Recently, a heavy rainfall under climate change causes the flood exceeded river's conveyance. Flood control methods under the limited river width are the increase of embankment, the construction of storage pockets and diversion channel, the dredging of river bed. Hwasun flood control reservoir of washland is designed as the storage pockets and the regulating gate for the control of water level. In this study, the propriety of design was investigated through hydraulic experiments for the circumstances to exclude the constant flood discharge during operation period. In the results, the over flow rate of side weir exceeded the flow of design and indicated to be able to discharge the designed flow in the regulating gate opened 1.1 m. The high velocity 7.1 m/s behind the gate has investigated to reduce under 3.3 m/s by the baffle block.

A study on the improvement measures of livestock manure management and organic fertilizer use in Nonsan area (가축분뇨 관리 및 퇴비·액비 이용에 대한 개선방안 고찰 - 논산지역을 중심으로 -)

  • Jeong, Dong-Hwan;Shin, Jinsoo;Lee, Chulgu;Yu, Soonju;Kim, Yongseok
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.345-359
    • /
    • 2013
  • The Ministry of Environment established a plan for advancement of livestock manure management in July 2011 and finalized the "Comprehensive Measures for Advancement of Livestock Manure Management" in May 2012 complementing and strengthening the plan. In this process, it was necessary to investigate the status of discharge of livestock manure and its environmental impact, for example on rivers, groundwater, arable outflow water and soil. We investigated types of livestock husbandry, discharge of livestock manure, and production and use of organic fertilizers and presented the improvement measures of livestock manure management and organic fertilizer use. First, it is necessary to come up with measures to calculate appropriate density and numbers of livestock animals and prevent overcrowded breeding. Second, as many of the private livestock manure treatment facilities are out-dated and their long-term aerated reaction tanks are not regularly managed, it is necessary to find ways to improve those facilities through inspection and diagnosis. In addition, since existing public treatment facilities are designed to add clean water to belt filter press, additional water is needed. Therefore, it is necessary to improve belt filter press in order to decrease the extra water. Finally, although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to establish standards for maturity of liquid fertilizers in order to facilitate efforts to turn livestock manure into resources.

Blade shape optimization of centrifugal fan for improving performance and reducing aerodynamic noise of clothes dryer (의류 건조기 성능 향상과 공력소음 저감을 위한 원심팬의 날개 형상 최적화)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Min-kyu;Lee, Kwangho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • The purpose of this study is paper is to improve the flow performance and to reduce the aerodynamic noise of air discharge system consisting of a centrifugal fan, ducts and a housing for the clothes dryer. Using computational fluid dynamics and acoustic analogy based on FW-H (Ffowcs-Williams and Hawkings) Eq., air flow field and acoustic fields of the air discharge system are investigated. To optimize aerodynamic performance and aerodynamic noise, the response surface method is employed. The two factors central composite design using the inflow and outflow angles of fan blades is adopted. The devised optimum design shows the reduction of turbulent kinetic energy in the ducts and the housing of the system, and as a result, the improved flow rate and reduce noise is confirmed. Finally, the experment using the proto-type manufactured usign the optimum design shows the increase of flow rate by 4.2 %.

Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river (Satellite-derived flow 시그널 및 인공신경망 모형을 활용한 임진강 유역 유출량 산정)

  • Li, Li;Kim, Hyunglok;Jun, Kyungsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.589-597
    • /
    • 2016
  • In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed(I) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(I) -격자 물수지 모형의 개발 및 적용-)

  • 김대식;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.23-33
    • /
    • 1995
  • Geographic data which are difficult to handle by the characteristics of spatial variation and variety turned into a possibility to analyze with tlie computer-aided digital map and the use of Geographic Information System(GIS). The purpose of this study is to develop and apply a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. This paper discribes the modeling procedure and the applicability of the cell water balance model (CELWAB) which calculates the water balance of a cell and simulates surface runoff of watershed simultaneously by the interaction of cells. The cell water balance model was developed to simulate the temporal and spatial storage depth and surface runoff of a watershed. The CELWAB model was constituted by Inflow-Outflow Calculator (JOC) which was developed to connect cell-to-cell transport mechanism automatically in this study. The CELWAB model requests detail data for each component of a cell hydrologic process. In this study, therefore, BANWOL watershed which have available field data was selected, and sensitivity for several model parameters was analyzed. The simulated results of surface runoff agreed well with the observed data for the rising phase of hydrograph except the recession phase. Each mean of relative errors for peak discharge and peak time was 0.21% and2.1 1% respectively. In sensitivity analysis of CELWAB , antecedent soil moisture condition(AMC) affected most largely the model.

  • PDF

Prediction of Suspended Solid Budget in Nakdong River Estuary (낙동강 하구역의 부유사 물질수지예측)

  • Ryu, Sung-Hoon;Kim, Kyung-Hoi;Lee, In-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.185-189
    • /
    • 2011
  • To predict the deposition characteristic in the Nakdong river estuary, the material budget of Suspended Solid(SS) was investigated with the amount of Nakdong river discharge being set as dry season and flood season. The results of material budged of SS in dry season and flood season were 60,708 kg/day(inflow) and 306,892 kg/day(outflow), respectively.

Characteristics of Allochthonous Organic Matter in Large Dam Reservoir, Lake Soyang (소양호에서 외부기원유기물의 유입, 유출 특성)

  • Park, Hae-Kyung;Kwon, Oh-youn;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • To identify the inflow and outflow characteristics of allchthonous organic matters and examine the change of allochthonous organic matter load pattern due to the climate change, we investigated the temporal variations of DOC and POC concentrations within inflow water and dam discharge water and spatio-temporal distribution of POM within the lake water in Lake Soyang which is the largest dam reservoir in Korea in 2006. Most of allochthonous DOC flowed into the lake water during initial rain and was not affected by the amount of precipitation, whereas most of allochthonous POC flowed into during concentrated heavy rain and the concentration of POC was significantly associated with the amount of inflow water and precipitation. Calculated annual allochthonous organic matter loads in Lake Soyang from 2003 to 2006 using the regression equation between the amount of inflow water and the concentration of POC indicate allochthonous organic matter loads are mainly affected by total influx and extreme influx of inflow water. The spatio-temporal distribution of POM indicated allochthonous organic matter of inflow river during flood period in July transported from upper part to middle and lower part of the lake a month later respectively along the middle layer of water column in Lake Soyang.

Change of Oceanographic Environment in the Nakdong Estuary (낙동강 하구에서의 해양 환경 변화)

  • JANG SUNG-TAE;KIM KI-CHEOL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.1
    • /
    • pp.11-20
    • /
    • 2006
  • The Nakdong Estuary is complex water system, where sea water and fresh water meet each other. It has undergone the significant change of its environmental conditions since the construction of the Nakdong River Barrier in 1987. Prior to its construction, mixing and circulation processes in the Nakdong Estuary was dominated by tidal current. However, after the dam construction, those processes were greatly altered by the artificial control of the fresh river water discharge. In this paper, the influence of opening and closing the floodgate of Nakdong River on the outflow behavior of estuarine water from the Nakdong Estuary is analyzed in detail.

Replacement of Obstructed Extracardiac Conduits with Autologous Tissue Reconstructions (Peel operation); Early and Midterm Results (심외도관 협착 환자에서 자가조직을 이용한 재수술(Peel 수술); 조기 및 중기성적)

  • Sung, Si-Chan;Chang, Yoon-Hee;Lee, Choong-Won;Park, Chin-Su;Lee, Hyoung-Doo;Ban, Ji-Eun;Choo, Ki-Seok
    • Journal of Chest Surgery
    • /
    • v.40 no.3 s.272
    • /
    • pp.193-199
    • /
    • 2007
  • Background: Reoperation is usually required for a right ventricle to pulmonary artery conduit obstruction caused by valve degeneration, conduit peel formation or somatic growth of the patient. An autologous tissue reconstruction (peel operation), where a prosthetic roof is placed over the fibrotic tissue bed of the explanted conduit, has been used to manage conduit obstructions at our institute since May 2002. Herein, the early and midterm results are evaluated. Material and Method: Between May 2002 and July 2006, 9 patients underwent obstructed extracardiac conduit replacement with an autologous tissue reconstruction, at a mean of 5.1 years after a Rastelli operation. The mean age at reoperation was $7.5{\pm}2.4$ years, ranging from 2.9 to 10.1 years. The diagnoses included 6 pulmonary atresia with VSD, 2 truncus arteriosus and 1 transposition of the great arteries. The preoperative mean systolic gradient was $88.3{\pm}22.2mmHg$, ranging from 58 to 125 mmHg. The explanted conduits were all Polystan valved pulmonary conduit (Polystan, Denmark). A bioprosthetic valve was inserted in 8 patients, and a monocusp ventricular outflow patch (MVOP) was used in 1 patient. The anterior wall was constructed with a Gore-Tex patch (n=7), MVOP (n=1) and bovine pericardium (n=1). Pulmonary artery angioplasty was required in 5 patients and anterior aortopexy in 2. The mean cardiopulmonary bypass time . was 154 minutes, ranging from 133 to 181 minutes; an aortic crossclamp was not performed in all patients. The mean follow-up duration was 20 months, ranging from 1 to 51 months. All patients were evaluated for their right ventricular outflow pathway using a 3-D CT scan. Resuit: There was no operative mortality or late death. The mean pressure gradient, assessed by echocardiography through the right ventricular outflow tract, was 20.4 mmHg, ranging from 0 to 29.6 mmMg, at discharge and 26 mmHg, ranging from 13 to 36 mmHg, at the latest follow-up (n=7, follow-up duration >1 year). There were no pseudoaneurysms, strictures or thrombotic occlusions. Conclusion: A peel operation was concluded to be a safe and effective re-operative option for an obstructed extracardiac conduit following a Rastelli operation.