• 제목/요약/키워드: out-of-plane strengthening

검색결과 16건 처리시간 0.021초

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

조적채움벽의 면외보강에 관한 연구 (A study on out-of-plane strengthening of masonry-infilled wall)

  • 장혜숙;은희창
    • 산업기술연구
    • /
    • 제41권1호
    • /
    • pp.7-13
    • /
    • 2021
  • Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW, is experimentally verified. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is reported that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency.

Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes

  • Cheng, Bin;Wu, Jie;Wang, Jianlei
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.811-831
    • /
    • 2015
  • This paper focuses on the strengthening methods used for improving the compression behaviors of perforated box-section walls as provided in the anchorage zones of steel pylons. Rectangular plates containing double-row continuous elliptical holes are investigated by employing the boundary condition of simple supporting on four edges in the out-of-plane direction of plate. Two types of strengthening stiffeners, named flat stiffener (FS) and longitudinal stiffener (LS), are considered. Uniaxial compression tests are first conducted for 18 specimens, of which 5 are unstrengthened plates and 13 are strengthened plates. The mechanical behaviors such as stress concentration, out-of-plane deformation, failure pattern, and elasto-plastic ultimate strength are experimentally investigated. Finite element (FE) models are also developed to predict the ultimate strengths of plates with various dimensions. The results of FE analysis are validated by test data. The influences of non-dimensional parameters including plate aspect ratio, hole spacing, hole width, stiffener slenderness ratio, as well as stiffener thickness on the ultimate strengths are illustrated on the basis of numerous parametric studies. Comparison of strengthening efficiency shows that the continuous longitudinal stiffener is the best strengthening method for such perforated plates. The simplified formulas used for estimating the compression strengths of strengthened plates are finally proposed.

RC자켓팅으로 보강된 기존 벽체의 면외방향 내진성능 실험평가 (Experimental Investigation of Out-of-Plane Seismic Resistance of Existing Walls Strengthened with RC Jacketing)

  • 엄태성;허무원;이상현;이범식;천영수
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.239-248
    • /
    • 2019
  • In this study, the out-of-plane seismic resistance of lightly-reinforced existing walls strengthened with thick RC jacket was investigated. The thick RC jacket with a thickness of 500 mm was placed at one side of the thin existing wall with a thickness of 150 mm. At the interface between the wall and RC jacket, a tee-shaped steel section with a number of anchor bolts and dowel bars was used as the shear connector. To investigate the connection performance and strengthening effects, the cyclic loading tests of four jacketed wall specimens were performed. The tests showed that the flexural strength of the jacketed walls under out-of-plane loading was significantly increased. During the initial behavior, the tee shear connector transferred forces successfully at the interface without slip. However, as the cracking, spalling, and crushing of the concrete increased in the exiting walls, the connection performance at the interface was significantly degraded and, consequently, the strength of the jacketed walls was significantly decreased. The flexural strength of the jacketed walls with tee shear connector was estimated considering the full and partial composite actions of the tee shear connector.

Effectiveness of steel wire mesh as a strengthening material for masonry walls: A review

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Wanraplang Warlarpih;Comingstarful Marthong
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.117-132
    • /
    • 2023
  • The most prevalent and oldest type of structure is unreinforced masonry (URM) structures; URM walls are still a widely used construction material in India and many other developing countries due to their simplicity, ease of construction, economic sustainability, and ability to be built with locally available materials. URM walls are significantly weak while carrying lateral loads. The poor performance of URM walls during earthquakes has necessitated investigating an effective method for strengthening a newly built masonry building or retrofitting an old structure. Wire mesh, being cost-effective and easily available, satisfies the requirements to strengthen new and old URM buildings. The use of wire mesh to strengthen and retrofit the URM structure is simple to use, quick to construct, and inexpensive, especially in developing nations where heavy machinery and highly qualified labour are lacking. The current paper reviews the effectiveness of steel wire mesh as a reinforcing material for enhancing masonry strength. The finding gave encouraging results for the field application of wire mesh.

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

보강된 철근콘크리트 벽체의 구조적 성능 (Structural Performance of Retrofitted Reinforced Concrete Walls)

  • 신영수;홍기섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권3호
    • /
    • pp.212-222
    • /
    • 1998
  • In several structural problems, the low concrete strength of compression members has the severest influence on the structural safety. However, the repairing and strengthening techniques for compression members are not established and evaluated. This study aimed to develop and evaluate the rehabilitation techniques to obtain proper structural strength of wall with low concrete strength. The specimens with low strength of concrete were retrofitted with commonly using section increase method and epoxy bonded glass fiber techniques. The tests were executed to failure under concentric and eccentric loads. In this paper, the structural behavior and failure modes were investigated to evaluate the strengthening effects of walls subjected to compression and out-of-plane bending.

  • PDF

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - II : 보수·보강 방법 (An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - II : Repair · Strengthening Method)

  • 이광일;박영석
    • 대한토목학회논문집
    • /
    • 제29권4A호
    • /
    • pp.307-313
    • /
    • 2009
  • 본 연구에서는 철도교의 세로보 절취부에 피로균열이 발생 하였을 때 이에 대한 적절한 보수 보강 방법을 연구하기 위하여 실제로 피로균열이 발생한 철도교를 연구대상으로 실물크기의 가로보-세로보 바닥틀 모형을 제작하고, 세로보의 절취부 및 균열부에 스톱 홀 보수, 덧댐판 보강, 연결판 보강, 브라켓 보강 등 보수 보강 방법을 적용하여 실내실험을 수행하였다. 그 결과 제일 효과적인 보강 방법으로는 세로보의 상부플랜지와 하부플랜지에 연결판과 브라켓을 설치하는 것이고, 균열 선단에 스톱 홀을 뚫는 방법은 보조적인 방법으로 사용할 수 있다는 결론을 얻었다. 그리고 균열 길이가 어느 정도 길 경우에는 복부판에 덧댐판을 설치할 필요가 있다.

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.