DOI QR코드

DOI QR Code

Effectiveness of steel wire mesh as a strengthening material for masonry walls: A review

  • Received : 2022.09.29
  • Accepted : 2023.05.28
  • Published : 2023.06.25

Abstract

The most prevalent and oldest type of structure is unreinforced masonry (URM) structures; URM walls are still a widely used construction material in India and many other developing countries due to their simplicity, ease of construction, economic sustainability, and ability to be built with locally available materials. URM walls are significantly weak while carrying lateral loads. The poor performance of URM walls during earthquakes has necessitated investigating an effective method for strengthening a newly built masonry building or retrofitting an old structure. Wire mesh, being cost-effective and easily available, satisfies the requirements to strengthen new and old URM buildings. The use of wire mesh to strengthen and retrofit the URM structure is simple to use, quick to construct, and inexpensive, especially in developing nations where heavy machinery and highly qualified labour are lacking. The current paper reviews the effectiveness of steel wire mesh as a reinforcing material for enhancing masonry strength. The finding gave encouraging results for the field application of wire mesh.

Keywords

References

  1. Abu Maraq, M.A., Tayeh, B.A., Ziara, M.M. and Alyousef, R. (2021), "Flexural behavior of RC beams strengthened with steel wire mesh and self-compacting concrete jacketing - Experimental investigation and test results", J. Mater. Res. Tech., 10, 1002-1019. https://doi.org/10.1016/j.jmrt.2020.12.069.
  2. ACI 549.1R-93 (1993), Guide for design, construction & repair of Ferrocement, ACI, Michigan, USA.
  3. ACI detailing manual-1988 (1988), ACISP-66, American Concr. Inst., Detroit, Michigan.
  4. Ali Shah, S.M., Shahzada, K., Gencturk, B. and Memon, S.A. (2017), "Retrofitting of full-scale confined masonry building using ferro-cement overlay", J. Perform. Constr. Fac., 31(5), 04017079. https://doi.org/10.1061/(asce)cf.1943-5509.0001060.
  5. Amanat, K.M., Alam, M.M.M. and Shahria Alam, M. (2007), "Experimental investigation of the use of ferrocement laminates for repairing masonry in filled RC frames", J. Civil Eng., 35(2), 71-80.
  6. Angelillo, M. (2014), Mechanics of Masonry Structures, 551. https://doi.org/10.1007/978-3-7091-1774-3
  7. Anil, O., Tatayolu, M. and Demirhan, M. (2012), "Out-of-plane behavior of unreinforced masonry brick walls strengthened with CFRP strips", Constr. Build. Mater., 35, 614-624. https://doi.org/10.1016/j.conbuildmat.2012.04.05.
  8. Ashraf, M., Khan, A.N., Ali, Q., Shahzada, K. and Naseer, A. (2011), "Experimental behavior of full scale URM building retrofitted with ferrocement overlay", Adv. Mater. Res., 255-260, 319-323. https://doi.org/10.4028/www.scientific.net/AMR.255-260.319.
  9. Ashraf, M., Khan, A.N., Naseer, A., Ali, Q. and Alam, B. (2012), "Seismic behavior of unreinforced and confined brick masonry walls before and after ferrocement overlay retrofitting", Int. J. Architect. Heritage, 6(6), 665-688. https://doi.org/10.1080/15583058.2011.599916.
  10. Banerjee, S., Nayak, S. and Das, S. (2018), "Enhancing shear capacity of masonry wallet using PP-band and steel wire mesh", Proceedings of the IOP Conference Series: Materials Science and Engineering, 431(7). https://doi.org/10.1088/1757-899X/431/7/072004.
  11. Banerjee, S., Nayak, S. and Das, S. (2019), "Enhancing the flexural behaviour of masonry wallet using PP band and steel wire mesh. Constr. Build. Mater., 194, 179-191. https://doi.org/10.1016/j.conbuildmat.2018.11.00.
  12. Banerjee, S., Nayak, S. and Das, S. (2020a), "Improving the in-plane behavior of brick masonry wallet using PP band and steel wire mesh", J. Mater. Civil Eng., 32(6), 04020132. https://doi.org/10.1061/(asce)mt.1943-5533.0003159.
  13. Banerjee, S., Nayak, S. and Das, S. (2020b), "Shear and flexural behaviour of unreinforced masonry wallets with steel wire mesh", J. Build. Eng., 30. https://doi.org/10.1016/j.jobe.2020.101254.
  14. Banerjee, S., Nayak, S. and Das, S. (2021), "Seismic performance enhancement of masonry building models strengthened with the cost-effective materials under bi-directional excitation", Eng. Struct., 242. https://doi.org/10.1016/j.engstruct.2021.112516.
  15. Bernold, L.E. and Chang, P. (1992), "Potential gains through welded-wire fabric reinforcement", J. Constr. Eng. Management, 118(2), 244-257. https://doi.org/https://doi.org/10.1061/(ASCE)0733-9364(1992)118:2(244).
  16. Carrillo, J., Pincheira, J.A. and Flores, L.E. (2020), "Quasi-static cyclic tests of confined masonry walls retrofitted with mortar overlays reinforced with either welded-wire mesh or steel fibers", J. Build. Eng., 27, 1-10. https://doi.org/10.1016/j.jobe.2019.100975.
  17. Chourasia, A., Singhal, S. and Parashar, J. (2019), "Experimental investigation of seismic strengthening technique for confined masonry buildings", J. Build. Eng., 25.https://doi.org/10.1016/j.jobe.2019.100834.
  18. De Silva, S. and Abeygunawardana, N.T. (2020), "Performance of ferro-cement strengthened unreinforced masonry walls against reverse cyclic loading", Engineer: J. Institution of Engineers, Sri Lanka, 52(4), 11. https://doi.org/10.4038/engineer.v52i4.7345.
  19. Donnini, J., Maracchini, G., Lenci, S., Corinaldesi, V. and Quagliarini, E. (2021), "TRM reinforced tuff and fired clay brick masonry: Experimental and analytical investigation on their in-plane and out-of-plane behavior", Constr. Build. Mater., 272. https://doi.org/10.1016/j.conbuildmat.2020.121643.
  20. Doran, B., Ulukaya, S., Unsal Aslan, Z., Karslioglu, M. and Yuzer, N. (2021), "Experimental investigation of CFRP strengthened unreinforced masonry walls with openings", Int. J. Archit. Heritage, 16(12), 1-14. https://doi.org/10.1080/15583058.2021.1918286.
  21. Dutta, S.C., Mukhopadhyay, P.S., Saha, R. and Nayak, S. (2015), "2011 Sikkim earthquake at eastern himalayas: Lessons learnt from performance of structures", Soil Dyn. Earthq. Eng., 75, 121-129. https://doi.org/10.1016/j.soildyn.2015.03.020.
  22. Dutta, S.C., Nayak, S., Acharjee, G., Panda, S.K. and Das, P.K. (2016). "Gorkha (Nepal) earthquake of April 25, 2015: Actual damage, retrofitting measures and prediction by RVS for a few typical structures", Soil Dyn. Earthq. Eng., 89, 171-184. https://doi.org/10.1016/j.soildyn.2016.08.010. 
  23. El-Diasity, M., Okail, H., Kamal, O. and Said, M. (2015), "Structural performance of confined masonry walls retrofitted using ferrocement and GFRP under in-plane cyclic loading", Eng. Struct., 94, 54-69. https://doi.org/10.1016/j.engstruct.2015.03.035.
  24. ElGawady, M., Lestuzzi, P. and Badoux, M. (2006), "Retrofitting of masonry walls using shotcrete", Proceedings of the NZSEE Conference, 45, 45-54.
  25. Elmalyh, S., Bouyahyaoui, A., Cherradi, T., Rotaru, A. and Mihai, P. (2020), "Shear strength of unreinforced masonry walls retrofitted with CFRP", Adv. Sci. Tech. Eng. Syst., 5(2), 351-359. https://doi.org/10.25046/AJ050246.
  26. Elsamny, M.K., Abd-Elhamed, M.K. and Mahmoud, M.H. (2016), "Rehabilitation of brick walls with openings using steel wire mesh", Int. J. Sci. Eng. Res., 7(12).
  27. Elsamny, M.K., Abd-Elhamed, M.K. and Elmokrany, A.A. (2017a), "Experimental study of brick walls with opening strengthened during construction by using steel wire mesh embedded into bed joint mortar between bricks", Int. J. Eng. Res. Tech., 6(1), 49-59.
  28. Elsamny, M.K., Ezz-Eldeen, H.A. and Elmokrany, A.A. (2017b), "Strengthening of brick walls with openings during construction by steel wire mesh around openings on both sides of wall", IOSR J. Mech. Civil Eng., 14(3), 131-139. https://doi.org/10.9790/1684-140305131139.
  29. El-Salakawy. T. and Hamdy, G. (2021), "Experimental and numerical investigation of strengthening of openings in masonry walls using steel bars and steel wire mesh", Eur. J. Environ. Civil Eng., https://doi.org/10.1080/19648189.2021.1997828.
  30. Gattesco, N. and Boem, I. (2015). "Experimental and analytical study to evaluate the effectiveness of an in-plane reinforcement for masonry walls using GFRP meshes", Constr. Build. Mater., 88, 94-104. https://doi.org/10.1016/j.conbuildmat.2015.04.01.
  31. Ghobadi, M.S., Jazany, R.A. and Farshchi, H. (2019), "In situ repair technique of infill masonry walls in steel frames damaged after an earthquake", Eng. Struct., 178, 665-679. https://doi.org/10.1016/j.engstruct.2018.10.022.
  32. Giaretton, M., Dizhur, D., Garbin, E., Ingham, J.M. and da Porto, F. (2018), "In-plane strengthening of clay brick and block masonry walls using textile-reinforced mortar", J. Compos. Constr., 22(5), 04018028. https://doi.org/10.1061/(asce)cc.1943-5614.0000866.
  33. Hamdy, G., El-Salakawy, T. and El-Gendy, A. (2018), "Strengthening loaded masonry walls to enable making openings - experimental and numerical investigation", Int. J. Sci. Eng. Res., 9(11), 1149-1161.
  34. IS 13935 (2009), Indian Standard Code of Evaluation, Repair and Strengthening of Masonry Building. Bureau of Indian Standards, New Delhi.
  35. Ismail, N. andIngham, J.M. (2016), "In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar", Eng. Struct., 118, 167-177. https://doi.org/10.1016/j.engstruct.2016.03.041.
  36. Ismail, N. and Khattak, N. (2019), "Observed failure modes of unreinforced masonry buildings during the 2015 Hindu Kush earthquake", Earthq. Eng. Eng. Vib., 18(2), 301-314. https://doi.org/10.1007/s11803-019-0505-x.
  37. Jagadish, K.S., Raghunath, S. and Nanjunda Rao, K.S. (2003), "Behaviour of masonry structures during the Bhuj earthquake of January 2001", Proceedings of the Indian Academy of Sciences, Earth and Planetary Sciences, 112(3), 431-440. https://doi.org/10.1007/BF02709270.
  38. Kadam, S.B., Singh, Y. and Li, B. (2014), "Strengthening of unreinforced masonry using welded wire mesh and micro-concrete - Behaviour under in-plane action", Constr. Build. Mater., 54, 247-257. https://doi.org/10.1016/j.conbuildmat.2013.12.033.
  39. Kadam, S.B., Singh, Y. and Li, B. (2015), "Out-of-plane behaviour of unreinforced masonry strengthened using ferrocement overlay", Mater. Structures/Materiaux et Constructions, 48(10), 3187-3203. https://doi.org/10.1617/s11527-014-0390-8.
  40. Kaish, A.B.M.A., Jamil, M., Raman, S.N., Zain, M.F.M. and Nahar, L. (2018), "Ferrocement composites for strengthening of concrete columns: A review", Constr. Build. Mater., 160, 326-340. https://doi.org/10.1016/j.conbuildmat.2017.11.054.
  41. Kouris, L.A.S. and Triantafillou, T.C. (2018). "State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM)", Constr. Build. Mater., 188, 1221-1233. https://doi.org/10.1016/j.conbuildmat.2018.08.039.
  42. Kumar, V. and Patel, P.V. (2016), "Strengthening of axially loaded circular concrete columns using stainless steel wire mesh (SSWM) - Experimental investigations", Constr. Build. Mater., 124, 186-198. https://doi.org/10.1016/j.conbuildmat.2016.06.109.
  43. Lin, Y.W., Biggs, D., Wotherspoon, L. and Ingham, J.M. (2014), "In-plane strengthening of unreinforced concrete masonry wallettes using ECC shotcrete. J. Struct. Eng., 140(11), 04014081. https://doi.org/10.1061/(asce)st.1943-541x.0001004.
  44. Lin, Y., Lawley, D., Wotherspoon, L. and Ingham, J.M. (2016), "Out-of-plane testing of unreinforced masonry walls strengthened using ECC shotcrete. Structures, 7, 33-42. https://doi.org/10.1016/j.istruc.2016.04.005.
  45. Maalej, M., Lin, V.W.J., Nguyen, M.P. and Quek, S.T. (2010), "Engineered cementitious composites for effective strengthening of unreinforced masonry walls", Eng. Struct., 32(8), 2432-2439. https://doi.org/10.1016/j.engstruct.2010.04.017.
  46. Marbaniang, D.F., Warjri, T. and Marthong, C. (2022), "Out-of-plane bending of masonry wall embedding with welded wire mesh (WWM) in different orientations", Innov. Infrastruct. Solutions, 7(1), 10-14. https://doi.org/10.1007/s41062-021-00676-w.
  47. Mourad, S.M. and Shannag, M.J. (2012), "Repair and strengthening of reinforced concrete square columns using ferrocement jackets", Cement Concrete Compos., 34(2), 288-294. https://doi.org/10.1016/j.cemconcomp.2011.09.010.
  48. Padalu, P.K.V.R., Singh, Y. and Das, S. (2018), "Experimental investigation of out-of-plane behaviour of URM wallettes strengthened using welded wire mesh", Constr. Build. Mater., 190, 1133-1153. https://doi.org/10.1016/j.conbuildmat.2018.09.176.
  49. Qeshta, I.M.I., Shafigh, P., Jumaat, M.Z., Abdulla, A.I., Ibrahim, Z. and Alengaram, U.J. (2014), The use of wire mesh-epoxy composite for enhancing the flexural performance of concrete beams", Mater. Design, 60, 250-259. https://doi.org/10.1016/j.matdes.2014.03.075.
  50. Rafeeqi. S.F.A. and Ayub. T. (2011), "Investigation of versatility of theoretical prediction models for plain concrete confined with ferrocement", Asian J. Civil Eng., 12(3), 337-352.
  51. Rossetto, T. and Peiris, N. (2009), "Observations of damage due to the Kashmir earthquake of October 8, 2005 and study of current seismic provisions for buildings in Pakistan", Bull. Earthq. Eng., 7(3), 681-699. https://doi.org/10.1007/s10518-009-9118-5.
  52. Sandoval, O.J., Takeuchi, C., Carrillo, J. and Barahona, B. (2021), "Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors", Constr. Build. Mater., 267. https://doi.org/10.1016/j.conbuildmat.2020.121054.
  53. Sathiparan, N., Nissanka, N.A.A.C. and Priyankara, R.L.S. (2016), "A comparative study of meshtype retrofitting for unreinforced masonry under in-plane loading", Arabian J. Sci. Eng., 41(4), 1391-1401. https://doi.org/10.1007/s13369-015-1937-x.
  54. Schuller, M.P., Atkinson, R.H. and Borgsmillerr, J.T. (1994), "Injection grouting for repair and retrofit of unreinforced masonry", Proceedings of the IB2MAC - 10h International Brick and Block Masonry Conference, 303, 549-558.
  55. Seismic Retrofitting of Deficient Buildings and Structures (2014), National Disaster Management Guidelines, Government of India.
  56. Shermi, C. and Dubey, R.N. (2017), "Study on out-of-plane behaviour of unreinforced masonry strengthened with welded wire mesh and mortar", Constr. Build. Mater., 143, 104-120. https://doi.org/10.1016/j.conbuildmat.2017.03.002.
  57. Shermi, C. and Dubey, R.N. (2018), "In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar", Constr. Build. Mater., 178, 195-203. https://doi.org/10.1016/j.conbuildmat.2018.04.081.
  58. Sistani Nezhad, R. and Kabir, M.Z. (2017), "Experimental investigation on out-of-plane behavior of GFRP retrofitted masonry panels", Constr. Build. Mater., 131, 630-640. https://doi.org/10.1016/j.conbuildmat.2016.11.118.
  59. Standard specification for highway bridges (1985), American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C.
  60. Suraj, S. and Unnikrishnan, S. (2020), Strengthening of concrete block masonry walls using steel wire mesh", Lecture Notes in Civil Eng., 46, 749-762. https://doi.org/10.1007/978-3-030-26365-2_69.
  61. Syiemiong, H. and Marthong, C. (2020), "Flexural behavior of low strength masonry wallettes strengthened with welded wire mesh", Materials Today: Proceedings, 43, 1774-1779. https://doi.org/10.1016/j.matpr.2020.10.452.
  62. Syiemiong, H. and Marthong, C. (2021), "The effect of mortar grade on the out-of-plane behaviour of low-strength masonry wall strengthened with welded wire mesh", Constr. Build. Mater., 279. https://doi.org/10.1016/j.conbuildmat.2021.122393
  63. Tripathy, D. and Singhal, V. (2021), "Strengthening of weak masonry assemblages using wire reinforced cementitious matrix (WRCM) for shear and flexure loads", Constr. Build. Mater., 277, 122223. https://doi.org/10.1016/j.conbuildmat.2020.122223.
  64. Turer. A., Korkmaz. S.Z. and Korkmaz. H.H. (2007), "Performance improvement studies of masonry houses using elastic post-tensioning straps", Earthq. Eng. Struct. D., 36, 683-705. https://doi.org/10.1002/eqe.649
  65. Valluzzi, M.R., Binda, L. and Modena, C. (2005), "Mechanical behaviour of historic masonry structures strengthened by bed joints structural repointing", Constr. Build. Mater., 19(1), 63-73. https://doi.org/10.1016/j.conbuildmat.2004.04.036.
  66. Warjri, T., Marbaniang, D. F., & Marthong, C. (2022), "In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar", J. Struct. Integrity Maint., 7(3), 177-187. https://doi.org/10.1080/24705314.2022.2048241.
  67. Xin, R. and Ma, P. (2021), "Experimental investigation on the in-plane seismic performance of damaged masonry walls repaired with grout-injected ferrocement overlay", Constr. Build. Mater., 282, 122565. https://doi.org/10.1016/j.conbuildmat.2021.122565
  68. Yardim, Y. and Lalaj, O. (2016), "Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing", Constr. Build. Mater., 102, 149-154. https://doi.org/10.1016/j.conbuildmat.2015.10.095.