• 제목/요약/키워드: osteoblastic cell

검색결과 228건 처리시간 0.027초

Surface characteristics and osteoblastic cell response of alkali-and heat-treated titanium-8tantalum-3niobium alloy

  • Lee, Bo-Ah;Kang, Choong-Hee;Vang, Mong-Sook;Jung, Young-Suk;Piao, Xing Hui;Kim, Ok-Su;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • 제42권6호
    • /
    • pp.248-255
    • /
    • 2012
  • Purpose: The aim of the present study was to evaluate the biological response of alkali- and heat-treated titanium-8tantalum-3niobium surfaces by cell proliferation and alkaline phosphatase (ALP) activity analysis. Methods: Commercial pure titanium (group cp-Ti) and alkali- and heat-treated titanium-8tantalum-3niobium (group AHT) disks were prepared. The surface properties were evaluated using scanning electron microscopy, energy dispersed spectroscopy and X-ray photoelectron spectroscopy (XPS). The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were also analyzed. The biological response of fetal rat calvarial cells on group AHT was assessed by cell proliferation and ALP activity. Results: Group AHT showed a flake-like morphology microprofile and dense structure. XPS analysis of group AHT showed an increased amount of oxygen in the basic hydroxyl residue of titanium hydroxide groups compared with group cp-Ti. The surface roughness (Ra) measured by a profilometer showed no significant difference (P>0.05). Group AHT showed a lower contact angle and higher surface energy than group cp-Ti. Cell proliferation on group AHT surfaces was significantly higher than on group cp-Ti surfaces (P<0.05). In comparison to group cp-Ti, group AHT enhanced ALP activity (P<0.05). Conclusions: These results suggest that group AHT stimulates osteoblast differentiation.

약콩 (Rhynchosia volubilis: 서목태) 및 대두 처리에 의한 MG-63 조골세포 증식 증가에서 ER$\alpha$의 역할에 대한 연구 (Study on the Role of Estrogen Receptor-Alpha in Yak-Kong and Soybean Induced Proliferation of MG-63 Human Osteoblastie Cells)

  • 엄소정;강인숙;조윤희
    • Journal of Nutrition and Health
    • /
    • 제38권7호
    • /
    • pp.512-520
    • /
    • 2005
  • Phytoestrogens, especially Yak-kong or soybean-derived isoflavones have been traditionally used as a supplement of estrogen for preventing postmenopausal osteoporosis in oriental folk medicine. In a previous study, we demonstrated that as Yak-kong and soybean increased MG-63 human osteoblastic cell proliferation, the expression of estrogen receptor $\alpha\;and\;beta\;(ER\;\alpha:\;ER\;\beta$) both were increased. However, the increased level of ER $\alpha$ is much higher than that of ER$\beta$. To determine whether the altered level of ER $\alpha$ expression affects Yak-kong or soybean induced MG-63 cell proliferation, we established cell lines stably expressing either ER $\alpha$ or antisense ER $\alpha$ RNAs. Increased expression of ER a in MG- 63 cells (ER $\alpha$-MG63) enhanced Yak-kong or soybean induced proliferation which paralleled with the enhanced expression of IGF-I. Inhibition of ER $\alpha$ expression by antisense $ER\;\alpha\;RNAs\;(As-ER\;\alpha-MG63$) caused these cells to insensitize Yak- kong or soybean induced proliferation and IGF-I expression. Furthermore, the comparable effects between Yak-kong and the combined treatment of genistein and daidzein at $0.5\;{\times}\;10^{-8}M$, which is a concentration of these two isoflavones similar to Yak-kong at 0.001 mg/ml, on cell proliferation and IGF-I expression in $ER\;\alpha-MG63\;or\;As-ER\;\alpha-MG63$ cells demonstrate that ER $\alpha$ plays an important, active role in MG-63 cell proliferation induced by phytoestrogens, especially Yak-kong or soybean derived isoflavones.

천년초 추출물이 조골세포의 증식과 ROS소거능에 미치는 영향 (ROS Scavenging Effect and Cell Viability of Opuntia humifusa Extract on Osteoblastic MC3T3-E1 Cells)

  • 황현정;정복미;김미향
    • 생명과학회지
    • /
    • 제21권12호
    • /
    • pp.1752-1760
    • /
    • 2011
  • 우리나라에서 자생하고 있는 천년초는 새로운 생리활성 물질을 생산할 수 있는 소재로 각광받고 있으며, mouse calvaria 유래의 MC3T3-E1 세포는 골세포의 세포 활성과 관련된 연구에서 유용하게 이용되어 왔다. 따라서 본 연구에서는 MC3T3-E1 세포를 이용하여 천년초 추출물이 세포 증식에 미치는 영향과 ALP 활성, 조골세포의 골 형성을 위한 필수 인자인 collagen 합성에 대한 영향을 검토하고 세포사의 주요 인자인 ROS 에 미치는 영향에 대해 검토하였다. 각 추출물의 수율은 껍질 열수 추출물이 35.2%로 가장 수율이 높았고, 다음으로 줄기 열수 추출물, 껍질 에탄올 추출물, 씨 열수 추출물, 줄기 에탄올 추출물 순으로 나타났으며, 수율이 가장 낮은 씨 에탄올 추출물은 20.6%였다. 각 추출물의 농도(1, 10 50, $100{\mu}g/ml$)에 따른 조골세포 성장에 미치는 영향을 MTT assay로 분석한 결과, 모든 군에서 대조군과 비교하여 유의적인 증식률을 나타내었으며 특히, $100{\mu}g/ml$ 씨 열수 추출물을 첨가하였을 때, 대조군과 비교하여 가장 높은 120% 정도의 증식률을 나타내었다. 천년초 추출물이 ALP 활성에 미치는 영향을 조사한 결과, 천년초 추출물을 $10\sim50{\mu}g/ml$ 첨가하였을 때, 대조군과 비교하여 유의적으로 증가하였으며 특히, 씨 에탄올 추출물을 $50{\mu}g/ml$ 첨가하였을 때, 130% 이상의 ALP 활성을 증가시켜 조골세포의 분화에 영향을 줄 가능성이 제시 되었다. 천년초 추출물이 조골세포의 collagen 합성에 미치는 실험결과에서는 천년초 씨 열수 추출물과 씨 에탄올 추출물의 $50\sim100{\mu}g/ml$ 농도에서 높은 합성능을 나타내었으며 그 중 씨 열수 추출물 $100{\mu}g/ml$ 농도에서 가장 높은 collagen 합성능을 보였다. 천년초 추출물이 세포내 ROS생성에 미치는 영향을 실험한 결과에서는 모든 천년초 추출물 처리에 의해 농도 의존적으로 형광 강도가 감소하는 경향을 보였으며 특히, 씨 열수 추출물의 $100{\mu}g/ml$ 경우, 대조군에 비해 54% 정도 ROS가 감소되어 천년초씨 추출물이 세포 내에서 높은 항산화력이 있는 것을 확인할 수 있었다. 따라서 천년초 추출물이 조골세포의 증식, ALP 활성, collagen 합성 및 ROS 생성 저해를 촉진하여 골 생성에 영향을 줄 수 있는 것이 확인되었으며, 추출 용매와 관계없이 씨 추출물이 가장 높은 활성을 나타내었다. 천년초 씨 중의 활성 성분 구명을 위해 향후 구체적 기작 연구와 in vivo 연구가 병행된다면, 골다공증 예방과 관련된 기능성 식품의 천연소재 개발이 가능할 것이라 사료된다.

치주인대 세포의 생물학적 특성 (Biological Characteristics of Human Periodontal Ligament Cells)

  • 박귀운;신형식;유형근
    • Journal of Periodontal and Implant Science
    • /
    • 제27권2호
    • /
    • pp.291-303
    • /
    • 1997
  • Periodontal ligament cells may have a role in the regulation of hard and soft periodontal tissues, but their specific function has not yet to be determined. To evaluate further their role in periodontal regeneration, they were examined for osteoblast-like behavior. Periodontal ligament cells and gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. Cells were cultured with DMEM at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator, and as a measure of cell characterization, it was examined that the morphology, alkaline phosphatase activity, collagen synthesis, and immunocytochemistry for osteonectin, osteocalcin, and collagen type I. Healthy periodontal ligament cells has more osteoblastic-like cell property in alkaline phosphatase activity. and collagen synthesis than gingival fibroblast. Immunocytochemistry localization explained that calcitonin were expressed in periodontal ligament cells only, and osteonectin and type I collagen were produced in both cells simultaneously. This results indicate that the growth characteristics of periodontal ligament cells and gingival fibroblasts exhibit some differences in proliferative rates and biochemical synthesis. The differences may help to calrify the role such cells play in the regenearation of periodontal tissues.

  • PDF

전기적 자극이 배양 두개관 골세포의 석회화에 미치는 영향에 관한 연구 (A study of the effects of electric current on the mineralzation of the cultured calvaria bone cells)

  • 박준봉;허인식;이혜자;최영철
    • Journal of Periodontal and Implant Science
    • /
    • 제27권4호
    • /
    • pp.949-961
    • /
    • 1997
  • To date, various clinical procedures have been used to restore periodontal apparatus destroyed by periodontal disease. And then, many experimental approaches have been proceeded to develop treatment methods to promote periodontal regeneration. Mechanical, chemical treatments to enhance the attachment of periodontal tissue cells as changing the physical properties of root surfaces, bone graft procedure, and treatments for guided tissue regeneration have been used for periodontal regeneration. However, recent studies have revealed that biologic factors such as growth factors promote biologic mechanism associated with periodontal regeneration. This study was done to enucleate how ELF stimulus affect the periodontal regeneration. We can have following conclusions from this experimental results. The influence of low frequency(ELF) electric stimulus (30Hz at $lO{\mu}A$) known to promote bone formation in vivo, was evaluated for its ability to affect bone cell function in vitro. After 12 hour exposure of ELF stimulus at most appropriate densities ($5{\times}10^4\;cells/cm^2$) to increase osteoblastic cells normally, rat calvarial cells were incubated for 60 hours were used in this study. We have found ELF stimulus suppress calvarial cell proliferation and the ability of protein synthesis, enhance the alkaline phosphatase activity significantly.

  • PDF

사람 태아 골모 세포에 대한 냉동 동종골과 근골격이식재의 골형성 유도에 관한 효과 (Effects of Irradiated Frozen Allogenic Bone and Musculoskeletal Transplant Foundation on Bone Formation in Human Fetal Osteoblasts)

  • 윤호상;피성희;윤형근
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.435-448
    • /
    • 2006
  • The purpose of this study was to investigate the effects of ICB(Irradiated frozen allogenic bone, Rocky Mountain Tissue Bank, USA) and MTF(Decalcified freeze-dried bone allograft, Musculoskeletal Transplant Foundation, USA) on the cell proliferation and differentiation of human fetal osteoblasts. Human fetal osteoblasts (hFOB1) were cultured with $10\;ng/m{\ell}$of ICB and MTF. The negatvie control group was cultured with DMSO and positive control group was cultured with BMF ($2\;ng/m{\ell}$). MIT was performed to examine the viability of the cell, and alkaline phosphatase activity was analyzed to examine the mineralization. Calcium accumulation was also evaluated. ICB and MTF did not increase the rate of the cellular proliferation of hFOB1s while they enhanced ALP and calcium accumulation. The expression of osteocalcin (OC) and bone silaloprotein (BSP) increased in hFOB1 treated with ICB and MTF ($10\;ng/m{\ell}$). These results suggest that ICB and MTF stimulate osteoblastic activity of the hFOBl.

The biological effects of fibrin-binding synthetic oligopeptides derived from fibronectin on osteoblast-like cells

  • Kim, Yun-Jeong;Park, Yoon-Jeong;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • 제42권4호
    • /
    • pp.113-118
    • /
    • 2012
  • Purpose: The aim of this study was to investigate the effects of synthetic fibronectin (FN) fragments, including fibrin binding sites from amino-terminal FN fragments containing type I repeats 1 to 5, on osteoblast-like cell activity. Methods: Oligopeptides ranging from 9 to 20 amino acids, designated FF1, FF3, and FF5, were synthesized by a solid-phase peptide synthesizing system, and we investigated the effects of these peptides on cell attachment and extent of mineralization using confocal microscopy, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and Alizarin red S staining. Results: FF3 and FF5 peptides increased the number of attached human osteoblastic cells, and FF3 administration led to prominent cell spreading. Mineralization was increased in FF3 and FF5 compared to FF1 and the untreated control. Conclusions: Taken together, it can be concluded that the fibrin-binding oligopeptides FF3 and FF5 enhanced cell attachment and mineralization on osteoblast-like cells. These results indicate that FF3 and FF5 have the potential to increase osteoblast-like cell activity. Performing an in vivo study may provide further possibilities for surface modification of biomimetic peptides to enhance osteogenesis, thus improving the regeneration of destroyed alveolar bone.

Zoledronate이 UMR-106 세포의 증식과 조골세포 형성에 미치는 영향 (Zoledronate(Zometa(R))inhibits the formation of osteoblast in rat osteoblastic cell line UMR-106)

  • 정기훈;류동목;지유진;이덕원;이현우
    • 대한치과의사협회지
    • /
    • 제46권10호
    • /
    • pp.623-632
    • /
    • 2008
  • Purpose : The purpose of this study is to identify the effect of zoledronate(Zometa(R)), which is most common nitrogen containing bisphosphonate, on survival, proliferation, and differentiation of osteoblast. Material & Methods: Twenty four cell culture plates containing essential medium were seeded with UMR-106 cell lines, at density of 5 x $10^4 cells per plates. Each plates were incubated with 5% $CO^2 incubator at $37^{\circ}C$. Starting from 2 days after incubation, cell culture medias were replaced, and added with osteogenesis induction media and 0, 0.01, 0.1, 0.5, 1, $3\muM$ of zoledronate(Zometa(R)), every 2 days, for 12 days. Control group was plates not added with zoledronate($0\muM$), and experiment group were plates added with different concentration of zoledronates(0, 0.01, 0.1, 0.5, 1, $3\muM$). Mature osteoblasts were identified with Alizarine Red staining, and protein samples were collected. Optical density was determined at wavelength of 405nm with ELISA reader. For viability analysis, cells were harvested and incubated with propidium iodide, and analysed with flow cytometry. Western blot technique was used to analyse Runx2 protein of osteoblast. Results : Secretion of bone matrix decreased as zoledronate concentration increased, and zoledronate did not effect survival rate of UMR-106 cells when measured with flow cytometer. Expression of Runx2 protein was inhibited as zoledronate concentration increased. Conclusion : From the results, we were able to identify that increase of zoledronate concentration inhibited differentiation of UMR-106 cell to osteoblast, without effecting quantity or survival rate.

  • PDF

마이크로그루브 및 열산화 복합 티타늄 표면의 골아세포분화 증진효과 (Effect of titanium surface microgrooves and thermal oxidation on in vitro osteoblast responses)

  • 서진호;이성복;안수진;박수정;이명현;이석원
    • 대한치과보철학회지
    • /
    • 제53권3호
    • /
    • pp.198-206
    • /
    • 2015
  • 목적: 다양한 크기의 마이크로그루브가 형성된 티타늄 표면에 열산화 처리를 한 복합 표면의 표면특성을 규명하고, 인간치주인대세포 배양 시 표면에 따른 다양한 세포행동들간 차이와 상관관계를 분석하고자 하였다. 재료 및 방법: Grade II 티타늄 디스크를 시편으로 제작하였다. 포토리소그라피를 이용하여 티타늄 시편의 마이크로그루브 크기를 폭/깊이 $0/0{{\mu}m}$, $15/3.5{{\mu}m}$, $30/10{{\mu}m}$, $60/10{{\mu}m}$로 각각 형성하였다. 평활한 티타늄 표면인 대조군(ST)을 제외한 모든 실험군(ST/TO, Gr15-TO, Gr30-TO, Gr60-TO)에 $700^{\circ}C$에서 3시간동안 열산화 처리하고, 주사현미경 사진을 사용하여 표면특성을 평가하였다. 인간치주인대세포를 배양한 후 BrdU (Bromdeoxyuridine) 실험, 알칼리성 인산가수분해효소 활성 실험, 세포외 칼슘 침착 실험을 통해 세포접착, 세포분화 및 골광화를 평가하였다. 통계분석으로는 일요인분산분석과 피어슨상관관계분석(SPSS version 17.0)을 사용하였다. 결과: 열산화를 동반한 마이크로그루브가 형성된 실험군(Gr15-TO, Gr30-TO, Gr60-TO)들은 평활한 대조군(ST)과 단순 열산화 처리 실험군(ST-TO)에 비하여 BrdU 실험, 알칼리성 인산가수분해효소 활성 실험, 세포 외 칼슘 침착 실험 모두에서 유의하게 증가된 활성도를 나타내었다. 특히, Gr60-TO군은 대조군 및 Gr15-TO, Gr30-TO, Gr60-TO 군 등에 비해 가장 증진된 세포접착 및 골아세포분화/골광화를 나타냈다. 결론: 본 연구의 한계 내에서, 열산화 처리 및 마이크로그루브 복합 티타늄 표면은 골아세포분화에 효과적 방법임이 확인되었다. 본 연구에서 규명 된 적정한 마이크로그루브 크기와 열산화 처리 조건은 마이크로그루브-열산화 복합 표면 티타늄 임플란트 개발의 기초 확립에 기여할 수 있을 것이다.