• Title/Summary/Keyword: osteoblastic

Search Result 355, Processing Time 0.025 seconds

Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells

  • Hu, Lifang;Su, Peihong;Li, Runzhi;Yan, Kun;Chen, Zhihao;Shang, Peng;Qian, Airong
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.583-588
    • /
    • 2015
  • Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function.

Effects of DSG on Osteoblastic Cell from Rat Calvariae in the Presence of Dexamethasone (단치소요산가미방이 Dexamethasone 처리한 랫드의 두개골 세포에 미치는 영향)

  • Park, Jong-Hyeong;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.2
    • /
    • pp.19-30
    • /
    • 2006
  • It is well known that glucocorticoid may induce osteoporosis as its side effect in long-term therapy. The inhibition of osteoblast by glucocorticoid is also recognized as its action mechanism of decreased bone formation. In this study, the effect of DSG, Danchisoyosangamibang, on the differentiation and function of osteoblastic cells was investigated. The osteoblastic cells were isolated from rat calvariae using collagenase treatment. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, intracellular alkaline phosphatase (ALP) activity, bone martrix production, and cell apoptosis. DSG enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracelluar collagen synthesis were increased time dependently when the cells were treated with DSG in the presence of dexamethasone. And, DSG restored calvarial cell function decreased by dexamethasone.

  • PDF

Anti-Oral Microbial Activity and Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Stimulated MC3T3-E1 Osteoblastic Cells on a Titanium Surface

  • Jeong, Moon-Jin;Lim, Do-Seon;Heo, Kyungwon;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2020
  • Background: The purpose of this study was to investigate the anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid (RA) in lipopolysaccharide (LPS)-stimulated MC3T3-E1 osteoblastic cells on a titanium (Ti) surface during osseointegration, and to confirm the possibility of using RA as a safe natural substance for the control of peri-implantitis (PI) in Ti-based dental implants. Methods: A disk diffusion test was conducted to confirm the antimicrobial activity of RA against oral microorganisms. In order to confirm the anti-inflammatory effects of RA, inflammatory conditions were induced with 100 ng/ml of LPS in MC3T3-E1 osteoblastic cells on the Ti surface treated with or without 14 ㎍/ml of RA. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface was confirmed using an NO assay kit and PGE2 enzyme-linked immunosorbent assay kit. Reverse transcription polymerase chain reaction and western blot analysis were performed to confirm the expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in total RNA and protein. Results: RA showed weak antimicrobial effects against Streptococcus mutans and Escherichia coli, but no antimicrobial activity against the bacteria Aggregatibacter actinomycetemcomitans and the fungus Candida albicans. RA reduced the production of pro-inflammatory mediators, NO and PGE2, and proinflammatory cytokines, TNF-α and IL-1β, in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface at the protein and mRNA levels. Conclusion: RA not only has anti-oral microbial activity, but also anti-inflammatory effects in LPS-stimulated MC3T3-E1 osteoblasts on the Ti surface, therefore, it can be used as a safe functional substance derived from plants for the prevention and control of PI for successful Ti-based implants.

Accelerating Effects of Quercetin on the $TNF-{\alpha}-Induced$ Apoptosis in MC3T3-E1 Osteoblastic Cells

  • Choi, Yong-Sung;Chung, Song-Woo;Jeon, Young-Mi;Kim, Jong-Ghee;Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.11 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • Bioflavone quercetin is believed to play an important role preventing bone loss by affecting osteoclastogenesis and regulating many systemic and local factors including hormones and cytokines. This study examined how quercetin acts on tumor necrosis factor-alpha ($TNF-{\alpha}$)-mediated apoptosis in MC3T3-E1 osteoblastic cells. Apoptosis assays revealed the dose-dependent acceleration of quercetin on $TNF-{\alpha}-induced$ apoptosis in MC3T3-E1 cells, which was demonstrated by the increased number of positively stained cells in the trypan blue staining and TUNEL assay, and the migration of many cells to the $sub-G_0/G_1$ phase in flow cytometric analysis. In particular, quercetin treatment alone increased the expression of p53 and p21 proteins in the cells. Consequently, this study showed that quercetin accelerates the $TNF-{\alpha}-induced$ apoptosis in MC3T3-E1 osteoblastic cells.

Effects of irradiation on the mRNA expression of the osteocalcin and osteopontin in MC3T3-E1 osteoblastic cell line (MC3T3-E1 조골세포주의 osteocalcin과 osteopontin mRNA 발현에 미치는 방사선의 영향)

  • Cho Su-Beom;Lee Sang-Rae;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.179-185
    • /
    • 2003
  • Purpose: To investigate the effects of irradiation on the phenotypic expression of the MC3T3-El osteoblastic cell line, particularly on the expression of osteocalcin and osteopontin. Materials and Methods: Cells were irradiated with a single dose of 0.5, 1,4, and 8 Gy at a dose rate of 5.38 Gy/min using a cesium 137 irradiator. After the specimens were harvested, RNA was extracted on the 3rd, 7th, 14th, and 21st day after irradiation. The RNA strands were reverse-transcribed and the resulting cDNAs were subjected to amplification by PCR. Results: The irradiated cells demonstrated a dose-dependent increase in osteocalcin and a dose-dependent decrease in osteopontin mRNA expression compared with the non-irradiated control group, The amount of osteocalcin mRNA expression decreased significantly at the 3rd day after irradiation of 0,5, 1,4, and 8 Gy, and also decreased significantly at the 3rd, 14th, and 21 st day after irradiation in the 8 Gy exposed group compared with the control group, The degree of osteopontin mRNA expression increased significantly at the 7th day after irradiation of 0,5, 1,4, and 8Gy, Conclusion: These results showed that each single dose of 0,5, 1, 4, and 8 Gy influenced the mRNA expression of osteocalcin and osteopontin associated with the calcification stage of osteoblastic cells, suggesting that each single dose affected bone formation at the cell level.

  • PDF

Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells

  • Kim, Eun-Cheol;Park, Jaesuh;Kwon, Il Keun;Lee, Suk-Won;Park, Su-Jung;Ahn, Su-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.5
    • /
    • pp.273-291
    • /
    • 2017
  • Purpose: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. Methods: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. Results: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) and total ${\beta}-catenin$ protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) pathways were activated. Conclusions: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.

Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways

  • Kim, Do-Yeon;Jung, Mi-Song;Park, Young-Guk;Yuan, Hai Dan;Quan, Hai Yan;Chung, Sung-Hyun
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.659-664
    • /
    • 2011
  • As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).

Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells

  • Park, Mi Hwa;Kim, Seoyeon;Cheon, Jihyeon;Lee, Juyeong;Kim, Bo Kyung;Lee, Sang-Hyeon;Kong, Changsuk;Kim, Yuck Yong;Kim, Mihyang
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Bone formation and bone resorption continuously occur in bone tissue to prevent the accumulation of old bone, this being called bone remodeling. Osteoblasts especially play a crucial role in bone formation through the differentiation and proliferation. Therefore, in this study, we investigated the effects of Scytosiphon lomentaria extract (SLE) on osteoblastic proliferation and differentiation in MC3T3-E1 cells. MATERIALS/METHODS: A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and protein expression analysis of osteoblastic genes were carried out to assess the osteoblastic proliferation and differentiation. RESULTS: The results indicated that treatment of SLE promoted the proliferation of MC3T3-E1 cells and improved ALP activity. And, SLE treatment significantly promoted mineralized nodule formation compared with control. In addition, cells treated with SLE significantly upregulated protein expression of ALP, type 1 collagen, bone morphogenetic protein 2, runt-related transcription factor 2, osterix, and osteoprotegerin. CONCLUSIONS: The results demonstrate that SLE promote differentiation inducement and proliferation of osteoblasts and, therefore may help to elucidate the transcriptional mechanism of bone formation and possibly lead to the development of bone-forming drugs.

Hyperosmotic Stimulus Down-regulates $1{\alpha}$, 25-dihydroxyvitamin $D_3$-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System

  • Tian, Yu-Shun;Jeong, Hyun-Joo;Lee, Sang-Do;Kong, Seok-Heui;Ohk, Seung-Ho;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Sohn, Byung-Wha;Lee, Syng-Ill
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.169-176
    • /
    • 2010
  • The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects $1{\alpha}$, 25-dihydroxyvitamin $D_3$ ($1{\alpha},25(OH)_2D_3$)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of $1{\alpha},25(OH)_2D_3$-induced tartrate-resistant acid phosphatase-positive multinucleated cells and $1{\alpha},25(OH)_2D_3$-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) and Runx2 expressions were down-regulated in response to $1{\alpha},25(OH)_2D_3$. Knockdown of Runx2 inhibited $1{\alpha},25(OH)_2D_3$-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells.

Growth and Osteoblastic Differentiation of Mesenchymal Stem Cells on Silk Scaffolds

  • Cho, Hee-Yeon;Baik, Young-Ae;Jeon, Suyeon;Kwak, Yoon-Hae;Kweon, Hae Yong;Jo, You Young;Lee, Kwang Gill;Park, Young Hwan;Kang, Dongchul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.303-311
    • /
    • 2013
  • In this study, we compared the efficiency of osteoblast differentiation media (ODM) containing three distinct reagent combinations in osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in monolayer culture. In addition, we analyzed growth and differentiation of hBMSCs on silk scaffolds and examined the bone-forming activity of a nanofibrous silk scaffold in a tibia diaphysis defect model of a rat hind limb with intramedullary nailing. Although all three ODM increased alkaline phosphatase activity to a comparable extent, the ODM containing bone morphogenetic protein-2 (BMP-2) was found to be significantly less effective in promoting mineral deposition than the others. Growth of hBMSCs on sponge-form silk scaffolds was faster than on nanofibrous ones, while osteoblastic differentiation was apparent in the cells grown on either type of scaffold. By contrast, bone formation was observed only at the edge of the nanofibrous scaffold implanted in the tibia diaphysis defect, suggesting that use of the silk scaffold alone is not sufficient for the reconstitution of the long bone defect. Since silk scaffolds can support cell growth and differentiation in vitro, loading MSCs on scaffolds might be necessary to improve the bone-forming activity of the scaffold in the long bone defect model.