• Title/Summary/Keyword: osteoblastic

Search Result 355, Processing Time 0.022 seconds

Effect of Extracts from Safflower Seeds on Osteoblastic Differentiation and Intracellular Free Calcium Concentration in MC3T3-El Cells

  • Jang, Hye-Ock;Eom, Hyun-Sup;Roh, Sung-Bae;Yun, ll
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • Very little research has been carried out on safflower seed for the prevention and treatment of the bone deficiency diseases, including osteoporosis, which are supported by scientific evidences. In the present study, $3{\mu}l$ of 0.1% dried crude extract or $2{\mu}l$ of 0.1% dried aqueous fraction were shown to significantly accelerate the rate of differentiation of osteoblast. Also, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells: $3{\mu}l$ of 0.1% dried crude extract and $2{\mu}l$ of 0.1% dried aqueous fraction significantly increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells ($8{\times}10^{-4}$) to the extent that it deserves a considerable attention. Furthermore, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells, and $300{\mu}M$ $Cd^{2+}$, specific calcium channel blocker, completely blocked the increase. Therefore, the increased $[Ca^{2+}]_i$ of the cultured osteoblast cells by safflower seed component continued to activate calcium channel.

TREATMENT OF A PATIENT WITH CLEIDOCRANIAL DYSPLASIA USING IMPLANT-SUPPORTED BAR OVERDENTURE: A CASE REPORT (바 피개의치를 이용한 쇄골두개이형성증 환자의 치료: 증례보고)

  • Jang, Jung-Hui;Song, Min-Seok;Kim, Hyeon-Min;Kim, Nam-Hun;Eom, Min-Yong;Koo, Hyun-Mo;Yi, Jun-Kyu;Jeong, Jong-Cheol;Kim, Se-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.1
    • /
    • pp.80-86
    • /
    • 2006
  • Cleidocranial dysplasia is rare inherited skeletal dysplasia. It was first reported by Martin in 1765. Subsequently, Marie and Sainton independently documented the criteria of the disease. Cleidocranial dysplasia is a bone disorder caused by a defect in the CBFA1 gene of chromosome 6p21. This gene guides osteoblastic differentiation and appropriate bone formation. Patient with cleidocranial dysplasia has maxillary deficiency, high and narrow palate, prolonged retention of primary teeth, unerupted permanent teeth and supernumerary teeth. Therapeutic options in these patients include of autotransplantation of selected impacted teeth, forced eruption of permanent teeth, full denture, overdenture and implant-supported prosthesis. We report a patient with cleidocranial dysplasia. This patient was treated with implant supported bar overdenture. Despite of gene defect that affects osteoblastic activity, bone remodeling and osseointegration occurred in our patient. So, we report this case with review of literature.

AN EXPERIMENTAL STUDY OF EFFECTS OF THE FIBRIN ADHESIVE ON BONE FORMATION PROCESS AFTER FREEZE DRIED DEMINERALIZED ALLOGENEIC BONE GRAFTS (냉동 건조 탈회 동종골 이식시 조직 접착제가 골 치유 과정에 미치는 영향에 관한 실험적 연구)

  • Kim, Chi-Kyeong;Kim, Soo-Nam;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.17 no.4
    • /
    • pp.365-378
    • /
    • 1995
  • Allogeneic bone grafting has recently been used in oral and maxillofacial regions to restore the cosmetic and functional problem. There are several types of allogeneic bone grafts ; bone powder, bone chips, bone blocks. Empirically, it is thought to be better to combine the allogeneic bone chips to any type of tissue adhesive not to displace during packing and condensing. But, there are no reports about using tissue adhesive in allogeneic bone grafting. This experimental study is designed to investigate the effect of the fibrin adhesive on bone healing process after demineralized allogeneic bone grafting in 60 rats. In control groups (30 rats), routine demineralized allogeneic bone grafting were done in 7 ${\times}$ 7mm calvarial bone defects which were drilled intentioally. And we used the fibrin adhesive for holding the bone particle in experimental groups (30 rats). Each experimental specimen was sacrified at 1, 2, 4, 6, 8 weeks postoperatively The results were as follows : 1. The degree of inflammatory cell infiltrations were more prominent in experimental than in control groups till 2 weeks. 2. Early fibroblast proliferation and new capillary proliferation were uncorporated around graft sites in the experimental groups later than in control groups at early stages. 3. Osteoblastic activity in control group was more prominent at 2 weeks. 4. Osteoblastic activity in experimental groups was more prominent than in control group till 4 weeks. 5. New bone formation was more in control group than experimental group till 3 weeks, but similar appearance after that time. As above results, initial bone healing within 2 weeks were more processed in without adhesive group than with adhesive group. But above 4 weeks; similar bone healing were observed.

  • PDF

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.

Combination of Runx2 and BMP2 increases conversion of human ligamentum flavum cells into osteoblastic cells

  • Kim, Hyun-Nam;Min, Woo-Kie;Jeong, Jae-Hwan;Kim, Seong-Gon;Kim, Jae-Ryong;Kim, Shin-Yoon;Choi, Je-Yong;Park, Byung-Chul
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.446-451
    • /
    • 2011
  • The conversion of fibroblasts into osteoblasts requires the activation of key signaling pathways, including the BMP pathway. Although Runx2 is known to be a component of the BMP pathway, the combination of Runx2 and BMP2 has not yet been examined with respect to the conversion of fibroblasts into osteoblasts. Here, human ligamentum flavum (LF) fibroblast-like cells from six patients were tested for their conversion into osteoblasts using adenoviruses expressing Runx2 or BMP2. The forced expression of Runx2 or BMP2 in primary cultured LF cells resulted in a variety of proliferation and differentiation behaviors. Combined treatment of BMP2 plus Runx2 resulted in better osteoblastic differentiation than treatment with either component alone. These results indicate that the Runx2 and BMP2 pathways possess both common and independent target genes. Collectively, Runx2 plus BMP2 mediated efficient conversion of fibroblast-like LF cells into osteoblast-like cells, suggesting the possible use of these components for clinical applications such as spinal fusion.

Concentrations of Calcium-binding Protein and Bone Gla-protein in Culture Medium and CaBP mRNA Expression in Osteoblasts of Broiler Chickens

  • Guo, Xiaoyu;Yan, Sumei;Shi, Binlin;Feng, Yongmiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.239-245
    • /
    • 2011
  • This study was conducted to determine the effects of excess vitamin A on alkaline phosphatase (ALP) activity, contents of calcium-binding protein (CaBP), bone gla-protein (BGP) in culture medium and CaBP mRNA expression in chicken osteoblasts in vitro. Osteoblastic cells in the tibia from 1-day-old Arbor Acre broiler chickens were isolated using enzyme digestion. The subconfluenced cells were divided into eight treatments with six replicates in each treatment and cultured in a medium containing either vehicle or different levels of vitamin A (0, 0.2, 0.6, 1.0, 2.0, 5.0, 10.0 and $20.0\;{\mu}g$/ml), and the control received an equivalent volume of ethanol. The incubation lasted 48 h. The results showed that vitamin A down-regulated ALP activity in the culture medium as well as CaBP mRNA expression of osteoblasts in a linear dose-dependent manner (p = 0.124 and p<0.10, respectively), and suppressed the contents of BGP and CaBP in the culture medium in a quadratic dose-dependent manner (p<0.05 and p<0.10, respectively) with increasing addition of vitamin A. The addition of 0-$0.2\;{\mu}g$/ml vitamin A to the culture medium increased ALP activity, BGP and CaBP contents as well as CaBP mRNA expression compared with other groups, but positive effects of vitamin A tended to be suppressed when vitamin A was increased to $1.0\;{\mu}g$/ml, and adverse effects occurred when vitamin A was increased to 10.0-$20.0\;{\mu}g$/ml. These results implied that there was a threshold level of vitamin A inclusion beyond which inhibitory effects occurred, and the mechanism by which overdose of vitamin A reduced bone growth in chickens was probably reduced osteoblastic cell activity, and inhibited expression of CaBP mRNA and CaBP secretion.

Effects of Ethyl Acetate Extract of Poncirus trifoliata Fruit for Glucocorticoid-Induced Osteoporosis

  • Yoon, Hyung-Young;Cho, Yun-Seok;Jin, Qinglong;Kim, Hyun-Gyu;Woo, Eun-Rhan;Chung, Yoon-Sok
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.89-95
    • /
    • 2012
  • Poncirus trifoliata fruit (PTF) affects the digestive and cardiovascular systems, and kidney function. The authors studied the effects of ethyl acetate (EtOAc) extract of PTF on the activities of osteoblasts and in an animal model. The main compounds of the EtOAc extract, naringin and poncirin have been confirmed by HPLC and NMR analysis. Effects of osteoblastic differentiation were measured by alkaline phosphatase (ALP) activity, osteopontin (OPN) protein expression and osteoprotegerin (OPG) mRNA expression in MC3T3-E1 cells. Also, osteoclast differentiation was measured by multinucleated cells (MNCs) formation through tartrate resistance acid phosphatase (TRAP)-positive staining. Bone mineral density (BMD) was measured before and after treatment with EtOAc extract of PTF in prednisolone-induced osteoporotic mice. Dexamethasone (DEX) decreased OPN and OPG expression level in MC3T3-E1 cells and ALP activity was decreased by DEX dose-dependently. EtOAc extract of PTF recovered the levels of ALP activity, and the expression of OPN and OPG in MC3T3-E1 cells treated with DEX. In osteoclast differentiation, multinucleated TRAP-positive cell formation was significantly suppressed by the EtOAc extract of PTF. Total body BMD was restored by EtOAc extract of PTF in prednisolone-induced osteoporotic mice. In conclusion, EtOAc extract of PTF recovered DEX-mediated deteriorations in osteoblastic and osteoclastic functions, and increased BMD in glucocorticoid-induced osteoporosis.

Effects of Medicinal Herb Extracts on Osteoblast Differentiation and Osteoclast Formation (한약재 추출물의 조골세포 분화 및 파골세포 형성에 미치는 영향)

  • Im, Nam-Kyung;Kim, Hyun-Jeong;Kim, Mi-Jin;Lee, Eun-Ju;Kim, Hyuk-Il;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.637-642
    • /
    • 2010
  • Bone is continuously remodeled by osteoblasts and osteoclasts. We investigated the effects of medicinal herbs, which act on bone metabolism. Fifteen kinds of medicinal herb extracts were screened for bone formation activity with osteoblastic cells, and MC3T3-E1 and bone resorption were screened with osteoclasts derived from mouse bone marrow macrophages. Among these samples, Actinidia polygama, Eucommia ulmoides Oliv., Schizonepeta tenuifolia, Sorbus commixta, and Zingiber officinale Rosc. extracts showed strong bone-forming activity accompanied with osteoblast proliferation and alkaline phosphatase activity. In addition, these extracts decreased tartrate-resistant acid phosphatase activity against osteoclast differentiation. The results indicate that these medicinal herb extracts can potentially prevent bone-related diseases such as osteoporosis by increasing osteoblast differentiation and reducing osteoclast activity.

Magnesium vs. machined surfaced titanium - osteoblast and osteoclast differentiation

  • Kwon, Yong-Dae;Lee, Deok-Won;Hong, Sung-Ok
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.157-164
    • /
    • 2014
  • PURPOSE. This study focused on in vitro cell differentiation and surface characteristics in a magnesium coated titanium surface implanted on using a plasma ion source. MATERIALS AND METHODS. 40 commercially made pure titanium discs were prepared to produce Ti oxide machined surface (M) and Mg-incorporated Ti oxide machined surface (MM). Surface properties were analyzed using a scanning electron microscopy (SEM). On each surface, alkaline phosphatase (ALP) activity, alizarin red S staining for mineralization of MC3T3-E1 cells, and quantitative analysis of osteoblastic gene expression, were evaluated. Actin ring formation assay and gene expression analysis of TRAP and GAPDH performing RT-PCR were performed to characterize osteoclast differentiation on mouse bone marrow-derived macrophages (BMMs). RESULTS. MM showed similar surface morphology and surface roughness with M, but was slightly smoother after ion implantation at the micron scale. M was more hydrophobic than MM. No significant difference between surfaces on ALP activity at 7 and 14 days were observed. Real-time PCR analyses showed similar levels of mRNA expression of the osteoblast phenotype genes; osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen 1 (Col 1) in cell grown on MM at 7, 14 and 21 days. Alizarin red S staining at 21 days showed no significant difference. BMMs differentiation increased in M and MM. Actin ring formation assay and gene expression analysis of TRAP showed osteoclast differentiation to be more active on MM. CONCLUSION. Both M and MM have a good effect on osteoblastic cell differentiation, but MM may speed the bone remodeling process by activating on osteoclast differentiation.

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.