• 제목/요약/키워드: oscillatory boundary layer

검색결과 10건 처리시간 0.031초

축대칭 물체의 경계층 유동소음에 대한 실험적 연구(II) - 전두부 천이제어 및 방사소음 - (Experimental Study on Flow Noise Generated by Axi-symmetric Boundary Layer (II) - Forced Transition on an Axi-symmetric Nose and Radiated Sound -)

  • 이승배;김휘중;권오섭;이상권
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1326-1334
    • /
    • 2000
  • The oscillatory excitation with a Strouhal number of 2.65 ncar the stagnation zone of hemispherical nose model was employed to control the laminar separation bubble and the transition to turbulence. The effects of oscillatory excitation upon the separation bubble and the transition were addressed in terms of kurtosis/skewness and time-frequency analyses. The measured noise spectrum of radiated sound from the turbulent boundary layer on the axi-symmetric infinite cylinder is compared with that by Sevik's wave-number white approximations. The noise sources in TBL on axi-symmetric cylinder and the caling of their far-field sound are also discussed.

높은 레이놀즈수를 가진 난류 진동 경계층에서의 k-ε과 k-ω 난류모형의 비교 (Comparative Study on k-ε and k-ω Closures under the Condition of Turbulent Oscillatory Boundary Layer Flow at High Reynolds Number)

  • 손민우;이관홍;이길성;이두한
    • 한국수자원학회논문집
    • /
    • 제44권3호
    • /
    • pp.189-198
    • /
    • 2011
  • 본 연구는 난류현상의 모형화를 위해 널리 이용되는 k-$\varepsilon$과 k-$\omega$ 난류모형을 비교하는 것이 목적으로, 횡방향 흐름이 무시될 수 있는 U-튜브 모양의 터널형 수로 내 높은 레이놀즈수를 가진 진동 경계층 흐름에 두 난류해석방법을 적용하였다. 난류모형의 적용은 1차원 연직 모형을 통해 이루어지며, 수치 모의 결과, 유속의 분포와 난류운동에너지 (turbulent kinetic energy) 모두에서 두 모형이 매우 유사한 결과를 나타낸다. 이를 통하여, 횡방향 압력경사가 무시될 수 있는 조건에서는 k-$\varepsilon$과 k-$\omega$ 난류모형이 큰 차이를 보이지 않고, 우수한 결과를 나타냄을 알 수 있다. 따라서 직선형 하천 및 하구부, 해안에서의 파랑 흐름 등과 같이 횡방향의 압력경사가 미미한 지역에서의 난류를 수치적으로 해석할 경우, 기존의 풍부한 연구를 통해 매개변수의 검보증이 장기간 이루어진 k-$\varepsilon$ 모형을 이용하는 것이 추천된다.

A CLOSED-FORM SOLUTION FOR TURBULENT WAVE BOUNDARY LAYERS

  • Larson, Magnus
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1995년도 정기학술강연회 발표논문 초록집
    • /
    • pp.66-70
    • /
    • 1995
  • The oscillatory boundary layer that develops when surface waves propagate over the sea bottom affects many flow-pendent phenomena in the coastal zone. Examples of such phenomena are wave energy dissipation due to bottom friction and the initiation and transport of sediment (Grant and Madsen 1986). In nature the boundary layer under waves will almost always be turbulent (Nielsen 1992). (omitted)

  • PDF

복사 열손실로 인한 확산 화염의 맥동 불안정에 관한 연구 (Radiation-Induced Oscillatory Instability in Diffusion Flames)

  • 손채훈;김종수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1185-1191
    • /
    • 1999
  • Radiation-induced oscillatory instability in diffusion flames is numerically investigated with nonlinear dynamics considered. As the simplest flame model, a diffusion flame established in the stagnant mixing layer is employed with optically thin gas-phase radiation and unity Lewis numbers for all species. Attention is focused on the radiation-induced extinction regime, which occurs at large $Damk\ddot{o}hler$ number. Once the steady flame structure is obtained for a prescribed value of the initial $Damk\ddot{o}hler$ number, transient solution of the flame is calculated after a finite amount of the $Damk\ddot{o}hler$-number perturbation is imposed on the steady flame. Transient evolution of the flame exhibits three types of flame-evolution behaviors, namely decaying oscillatory solution, diverging solution to extinction and stable limit-cycle solution. A dynamic extinction boundary is identified for laminar flamelet library.

원관내 왕복유동에서 비정상 열전달 관계식의 공식화 (A new formulation for unsteady heat transfer of oscillatory flow in a circular tube)

  • 박상진;이대영;노승탁
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2953-2964
    • /
    • 1996
  • 왕복유동에 의한 순간 열전달현상은, 왕복유동의 두가지 특성인 왕복주파수와 왕복거리를 나타내는 .betha.와 .gamma.에 의하여 결정되고, 그 특성에 따라 세영역으로 나누어짐을 확인하였다. 영역 I에서는 일방향유동에서와 마찬가지로 열유속이 평균온도차에 비례하고, 영역 II에서는 열유속과 평균온도차간에 약 45.deg.의 위상차가 발생하지만 모두 1차 조화성분이 주로 나타났다. 한편 영역 III의 경우에는 위상차가 생길뿐만 아니라 평균온도차에 고차 조화성분이 나타났다. 기존의 방법인 복소 Nusselt수를 고차 조화성분까지 확장하면 열유속을 평균온도차로 나타낼 수 있지만 각 조화성분의 정보를 다 알아야하므로 실제 적용이 불가능하였다.

저면난류경계층(底面亂流境界層)의 저질이동특성(底質移動特性) (On the Sediment Transport Characteristics of the Bottom Turbulent Boundary Layer)

  • 김남형;키요시 타키카와
    • 대한토목학회논문집
    • /
    • 제13권2호
    • /
    • pp.267-277
    • /
    • 1993
  • 본 논문에서는 유한요소법을 2차원 난류경계층에 적용하였으며, 점성유체의 시간의존 비압축성 운동을 시간과 압력장(場)에서 Navier-Stokes방정식과 vorticity방정식을 이용하여 정식 화하였다. 수치계산방법은 Galerkin방법에 기초하였으며, 난류 경계층의 eddy kinematic viscosity에 대해서는 Prandtl의 혼합거리이론을 도입하였다. 난류 경계층에서 파동에 의한 임의 저면에서 저질의 이동을 수치계산하였다. 유한 요소법에 의해 얻어진 결과는 진동흐름에 의한 경계층과 파동에 의한 경계층에서의 특성의 차이를 분명히 하였다.

  • PDF

주유동 맥동과 경계층 와류의 상호작용이 벽면 열전달에 미치는 영향 (Heat Transfer Characteristics of the Interaction Between Bulk Flow Pulsation and a Vortex Embedded in a Turbulent Boundary Layer)

  • 강새별;맹두진;이준식
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.381-388
    • /
    • 2001
  • Presented are heat data which describe the effect of interaction between bulk flow pulsations and a vortex embedded in a turbulent boundary layer. The pulsation frequencies are 3 Hz, 15 Hz and 30 Hz. A half delta wing with the same height as the boundary layer thickness is used to generate the vortex flow. The convection heat transfer coefficients on a constant heat-flux surface are measured by embedded 77 T-type thermocouples. Spanwise profiles of convection heat transfer coefficients show that upwash region of vortex flow is influenced by bulk flow pulsations. The local heat transfer coefficient increases approximately by 7 percent. The increase in the local change of convection heat transfer coefficient is attributed to the spanwise oscillatory motion of vortex flow especially at the low Strouhal number and to the periodic change of vortex size.

수평가진을 받는 직사각형 용기 내 2차 유동의 실험적/수치해석적 연구 (Experimental/Numerical Study on a Secondary Flow within a Rectangular Container Subjected to a Horizontal Oscillation)

  • 변민수;서용권
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1014-1021
    • /
    • 2002
  • Analysis of two-dimensional secondary flows given by an oscillatory motion of a liquid with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We considered the effects of the free-surface properties such as the surface tension and the dilatational viscosity. The boundary-layer analysis as well as an experiment is used in establishing the free surface properties. The secondary flow patterns are visualized by a laser sheet. It is shown that the secondary flow patterns predicted by the numerical methods are in good agreement with the experimental results.

Numerical Study on the Motion of Azimuthal Vortices in Axisymmetric Rotating Flows

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.313-324
    • /
    • 2004
  • A rich phenomenon in the dynamics of azimuthal vortices in a circular cylinder caused by the inertial oscillation is investigated numerically at high Reynolds numbers and moderate Rossby numbers. In the actual spin-up flow where both the Ekman circulation and the bottom friction effects are included, the first appearance of a seed vortex is generated by the Ekman boundary-layer on the bottom wall and the subsequent roll-up near the corner bounded by the side wall. The existence of the small vortex then rapidly propagates toward the inviscid region and induces a complicated pattern in the distribution of azimuthal vorticity, i.e. inertial oscillation. The inertial oscillation however does not deteriorate the classical Ekman-pumping model in the time scale larger than that of the oscillatory motion. Motions of single vortex and a pair of vortices are further investigated under a slip boundary-condition on the solid walls. For the case of single vortex, repeated change of the vorticity sign is observed together with typical propagation of inertial waves. For the case of a pair of vortices with a two-step profile in the initial azimuthal velocity, the vortices' movement toward the outer region is resisted by the crescent-shape vortices surrounding the pair. After touching the border between the core and outer regions, the pair vortices weaken very fast.

유수단면 흐름장에서 Shear 효과를 갖는 Stokes Drift의 계산법 (New Method of Computing the Stokes Drift Including Shear Effect in the Cross-Sectional Flow Field)

  • 김종화;박병수
    • 수산해양기술연구
    • /
    • 제33권1호
    • /
    • pp.9-26
    • /
    • 1997
  • Stokes drift(SD) and Lagrangian discharge(LD) are important factors for analysis of flushing time, tidal exchange, solute transport and pollutant dispersion. The factors should be calculated using the approached method to flow phenomena. The aim of this paper re-examines the previous procedures for computing the SD and LD, and is to propose the new method approached to stratified flow field in the cross-section of coastal region, e.g. Masan Bay. The intensity of velocity near the bottom boundary layer(BBL) depends on the sea-bed irregularity in the coastal estuaries. So we calculated the depth mean velocity(DMV) considering that of BBL omitted in Kjerfve's calculation method. It revealed that BBL effect resulting in application of the bay acts largely on DMV in half more among 1l stations. The new expression of SD and LD per unit width in the cross-section using the developed DMV and proposed decomposition procedure of current were derived as follow : $$Q=u_0+\frac{1}{2}H_1{U_1cos(\varphi_h-\varphi_u)+U_3cos(\varphi_h-\varphi{ud})} LD ED SD$(Q_{skim}+Q_{sk2}) The third term, $Q_{sk2}$, on the right-hand of the equation is showed newly and arise from vertical oscillatory shear. According to the results applied in 3 cross-sections including 11 stations of the bay, the volume difference between proposed and previous SD was founded to be almost 2 times more at some stations. But their mean transport volumes over all stations are 18% less than the previous SD. Among two terms of SD, the flux of second term, $Q_{skim}$, is larger than third term, $Q_{sk2}$, in the main channel of cross-section, so that $Q_{skim}$ has a strong dependence on the tidal pumping, whereas third term is larger than second in the marginal channel. It means that $Q_{sk2}$ has trapping or shear effect more than tidal pumping phenomena. Maximum range of the fluctuation in LD is 40% as compared with the previous equations, but mean range of it is showed 11% at all stations, namely, small change. It mean that two components of SD interact as compensating flow. Therefore, the computation of SD and LD depend on decomposition procedure of velocity component in obtaining the volume transport of temporal and spacial flow through channels. The calculation of SD and LD proposed here can separate the shear effect from the previous SD component, so can be applied to non-uniform flow condition of cross-section, namely, baroclinic flow field.

  • PDF