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INTRODUCTION

The oscillatory boundary layer that develops when surface waves propagate over the sea bottom
affects many flow-dependent phenomena in the coastal zone. Examples of such phenomena are wave
energy dissipation due to bottom friction and the initiation and transport of sediment (Grant and
Madsen 1986). In nature the boundary layer under waves will almost always be turbulent (Nielsen
1992). Most approaches to calculate the velocity in thé wave boundary layer employ the eddy
viscosity concept to model the turbulence. The most simple models are based on a linear variation
in the eddy viscosity », with elevation z (Grant and Madsen 1979), whereas more complex models
assume several different layers, each having a separate equation to relate », and z (Kajiura 1968,
Brevik 1981, Myrhaug 1982). In reality, », should also depend on time and Trowbridge and Madsen
(1984) developed a model where a time-varying eddy viscosity was employed. However, in most
models the prediction of the velocity in the wave boundary layer is not overly sensitive to the
formulation of v, and a simple model such as the one suggested by Grant and Madsen (1979) often
yield satisfactory results.

The main objective of the present study is to develop a simple, analytical model of the flow in an
oscillatory boundary layer under rough turbulent conditions that may be employed for situations where
the free-stream velocity is not purely sinusoidal. It will be assumed that the effects of the nonlinear
terms in the momentum equations are small enough to be neglected, implying that the linearized
boundary layer equation may be used. A simple eddy viscosity formulation in accordance with Grant
and Madsen (1979) is employed to model the turbulent stresses. The model is tested with data from
Jonsson (1980) for a sinusoidal free-stream velocity and with data from Nadaoka et al. (1994) for an
asymmetrical free-stream velocity of cnoidal type.

THEORETICAL CONSIDERATIONS

Employing the simple eddy viscosity model by Grant and Madsen (1979), the linearized turbulent
boundary layer (TBL) equation may be written (Nielsen 1992),

a 9 d
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where u,,(z,?) is the velocity in the TBL, u,(t) the free-stream (wave) velocity, ¢ time, z a vertical
coordinate, x von Karman’s constant (=0.40), and u,,, a constant, representative bottom shear
velocity. With the boundary conditions u,,=0 for z=z,, where z,, is the characteristic height of the
bottom roughness, and u,,=u,, for z —+ oo, Equation 1 has the following general solution,

4y = [SE-D)LEDE + Ul @

where u;,, denotes u;, at =0 and,
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in which J, and Y, are zero-order Bessel functions of the first and second kind, respectively, and y
is a dummy integration variable. Equation 3 corresponds to the solution for a time-independent free-
stream velocity employed at =0 (i, () =u,,=constant); thus, the solution for any u,(#) is obtained
through the superposition of the response from an infinite number of temporal changes in uy, as
expressed by the convolution integral in Equation 2. Figure 1 illustrates I, in non-dimensional form,
and the curves may be interpreted as velocity profiles at different times indicating the TBL growth
through the water column.

Equation 2 is a general solution to Equation 1 for any type of free-stream velocity, although from a
physical point of view the solution only makes sense for a wave boundary layer where the
assumptions behind Equation 1 are applicable. There is only one free parameter in the solution,
namely the roughness length scale z,, which in the case of rough turbulent flow over a flat bed is
typically set to k,/30, where k,, is the equivalent Nikuradse sand grain roughness (Grant and Madsen
1979). The representative shear velocity ue,, is obtained implicitly from the solution. Grant and
Madsen (1979) studied the TBL under a sinusoidal free-stream velocity and used the maximum bottom
shear stress 7p,,,, during a wave period to define u,, = (Tomax/P)’?, Where p is the water density. For
more complex variations in the free-stream velocity other choices to define ., may be more
appropriate, such as the mean absolute value of the bottom shear stress during a cycle (Thar)

Equation 2 was derived using Laplace transform technique and for elementary u,(#) more convenient
forms than Equation 2 may be obtained. If the free-stream velocity is sinusoidal and described by
up =u,coswt, where u, is the velocity amplitude at the bottom and w is the angular frequency, the
following solution satisfies Equation 1 and the boundary conditions,
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where N, and &, is the modulus and phase, respectively, of the zero-order Kelvin function ker x +
i kei x, and f=wz /xu.,,. The second term in Equation 4 is a transient that is dampened out quickly
for small values on f; in most cases this term is negligible already after a wave period.

Stream function theory (Dean 1965) is convenient for describing nonlinear wave properties, because
the theory is valid from deep water up to wave breaking. The bottom orbital velocity at a point under
a wave described by stream function theory may be expressed as,

2 N
u, = -T" > nX(n)cos(nwi) ®)
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where L is the wavelength, X(n) stream function coefficients, and N the order of the theory employed.
The velocity given by Equation 5 is a sum of sinusoidal components and the steady-state solution to
Equation 1 with this u, is,
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where u,=2wnX(n)/L. A wave described by stream-function theory is uniquely defined by the two
ratios h/L, and H/L,, where h is water depth, H wave height, and the subscript o denotes deepwater
conditions. Waves with identical values on A/L, and H/L, yield the same dimensionless velocity
u,/(H/T); thus, the quantity H/T appears as a normalizing "velocity”. A wave friction factor (Jonsson
1980) derived for a stream function wave will depend not only on the normalized roughness k,/H,
but also on A/L, and H/L,. The friction velocity may be computed by using 7,,,, which is obtained
from time integration of the absolute shear stress over a wave period T.
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RESULTS

Measurements by Jonsson (1980) of u,, in a water tunnel for a sinusoidally varying u, with the
amplitude u, was first employed to validate Equation 1 for describing the velocity in the TBL. It was
verified that Equation 2 produced identical resuits to Equation 4, and the steady-state portion of the
solution was used for the comparison with the data. Jonsson (1980) presented data for two cases: 1)
u,=2.11 m/s, T=8.39 s, k,=2.3 cm, and 2) u,=1.53 m/s, T=7.20 s, k,=6.3 cm. Comparison
between the analytical solutlon and the measurements was performed for the phases t/T = 1/2, 5/8,
3/4, 7/8, and 1. The Reynolds number Re for Cases 1 and 2 were 6.0 10° and 2.7 109, respectively,
based on the bottom excursion amplitude 4, (=u,/w) and u,,. The roughness values given by Jonsson
were employed and there were no free cahbratlon parameters Two dlfferent definitions of u,, were
used in the comparison, namely ug,,,—(rb,,m/p) and u, —(wa/p) . Figures 2 and 3 display the
comparison between the analytical solution and the measurements for Cases 1 and 2, respectively. In
general, the difference between the two formulations for u.,, is small, although using 7,,, seems to
consistently produce somewhat better agreement with the data. Some of the overshoot effect in the
data is not entirely captured by the analytical solution, especially for Case 2.

Nadaoka et al. (1994) measured u,, in an oscillatory tunnel using air for a free-stream velocity that
was asymmetric. The measurements used here to evaluate the TBL model involved a velocity u,, that
was of cnoidal type with a positive peak velocity of 2.50 m/s, a negative peak velocity of 1.05 m/s,
and a period of 5 s. A cnoidal wave producing a non-dimensional time variation in u, corresponding
to the experimental conditions implies an Ursell number of U,=57.8, although during the experiment
uy, was generated to agree with the velocity induced by a hyperbolic wave. Such a strongly nonlinear
wave provides a severe test for the linearized TBL equation; neglecting the nonlinear terms in the
governing equation assumes that the particle velocity is small compare to the wave phase speed, which
may not be the case for strongly nonlinear waves. However, for data obtained in oscillatory tunnels
the spatial gradients should be small enough to permit that the nonlinear terms are neglected.

Instead of using a cnoidal or hyperbolic wave to describe u,, in the solution given by Equation 2, u,
was approximated using a wave described by 20-order stream function theory. Stream function,
cnoidal, and hyperbolic theory could be employed to produce essentially identical variation in 1z, with
time, but the former theory allows direct calculation of u,,, from Equation 6 for steady-state conditions
without having to compute for the transient phase, which is necessary if the general solution in
Equation 2 is employed. The bed consisted of spray-painted aluminum and was judged to be
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hydraulically smooth during the experiments. Thus, the length scale z, is independent of the boundary
roughness and may be calculated from z,=(3.3,/us,,)/30, where v, is the kinematic viscosity for air.
The air temperature was about 10 deg during the experiment and the corresponding Reynolds number
was Re=2.8 10°. The origin of the vertical axis in the measurements was assumed to approximately
coincide with z,,.

Since smooth turbulent flow prevailed during the experiment, z, could be obtained from », and uy,,
and no calibration was needed to estimate the bed roughness. The representative shear velocity was
based on 7,,,,, which was determined through time integration over 7. A value of us,,=0.065 m/s was
thus calculated implying z,=0.024 mm. Figure 4 displays measured and calculated velocity profiles
for selected phase values of ¢/7. The maximum positive peak in i, occurred at about 0.18¢/T, the
maximum negative peak at 0.68t/T, and zero velocity at 0.36¢/T. The model captures the overall
features of the velocity variation in the boundary layer, but the overshoot effect is not well predicted
by the model, especially during the phase of flow reversal in the boundary layer in connection with
large gradients in the wave velocity. The simple eddy viscosity model employed in the linearized TBL
equation is most likely the reason for the disagreement between the model and the measurements,
although lack of detailed information on z, and the use of stream function theory to describe u;, may
also contribute to the discrepancy.
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Fig. 1. The integral I, as a function
non-dimensional distance and time.

Vciocity (m/s)

L T L] ) ' ¥ ) T ) l L trll‘ L |
s - 1
e /8 4
34
gy /8
™ L ] 2 1,2
------- Usy, frOM 7hy
IS A L A l A 1 L Ny l L ']
0 100 200
Elevation (mm)

Fig. 3. Calculated and measured velocity
in the turbulent boundary layer
for Case 2 from the data by Jonsson.
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Fig. 2. Calculated and measured velocity in
the turbulent boundary layer for
Case 1 from the data by Jonsson.
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Fig. 4. Calculated and measured velocity in
the turbulent boundary layerusing the
asymmetric velocity case from
Nadaoka et al.



