• Title/Summary/Keyword: oscillatory

Search Result 716, Processing Time 0.026 seconds

Ursodeoxycholic Acid (UDCA) Exerts Anti- Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

  • Chung, Jihwa;Kim, Kyoung Hwa;Lee, Seok Cheol;An, Shung Hyun;Kwon, Kihwan
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.851-858
    • /
    • 2015
  • Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

Comparison Study on the Residual Excess Pore Water Pressure Observed in seabed (해저지반에서 계측된 잔류과잉간극수압에 대한 비교 연구)

  • Yang, Soonbo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.173-179
    • /
    • 2013
  • The interaction among wave, seabed and marine structure is an important issue in coastal engineering as well as geotechnical engineering. Understanding variations of stresses and pore water pressures generated in seabed induced by waves is important for civil engineers who have to design the foundation for various marine structures and verify the instability of seabed. In the matters on seabed instability, particularly, in the case of wave-induced liquefaction of seabed, it is turned out there are two different mechanisms through previous studies. These are caused by the transient or oscillatory nature and the residual or progressive nature of excess pore water pressure generated in seabed, respectively. In this study, it is analyzed dynamic characteristics of soils sampled in seabed around the port of Kochi, Japan, through the dynamic triaxial tests and the residual excess pore water pressure in the seabed induced by seepage force of wave. In addition, the calculated residual excess pore water pressures were compared with the field data observed in the port of Kochi.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

Reassessment of viscoelastic response in steel-concrete composite beams

  • Miranda, Marcela P.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • In this paper the viscoelastic responses of four experimental steel-concrete composite beams subjected to highly variable environmental conditions are investigated by means of a finite element (FE) model. Concrete specimens submitted to stepped stress changes are also evaluated to validate the current formulations. Here, two well-known approaches commonly used to solve the viscoelastic constitutive relationship for concrete are employed. The first approach directly solves the integral-type form of the constitutive equation at the macroscopic level, in which aging is included by updating material properties. The second approach is postulated from a rate-type law based on an age-independent Generalized Kelvin rheological model together with Solidification Theory, using a micromechanical based approach. Thus, conceptually both approaches include concrete hardening in two different manners. The aim of this work is to compare and analyze the numerical prediction in terms of long-term deflections of the studied specimens according to both approaches. To accomplish this goal, the performance of several well-known model codes for concrete creep and shrinkage such as ACI 209, CEB-MC90, CEB-MC99, B3, GL 2000 and FIB-2010 are evaluated by means of statistical bias indicators. It is shown that both approaches with minor differences acceptably match the long-term experimental deflection and are able to capture complex oscillatory responses due to variable temperature and relative humidity. Nevertheless, the use of an age-independent scheme as proposed by Solidification Theory may be computationally more advantageous.

Experimental study on release of plastic particles from coastal sediments to fluid body (해안 유사에서 수체로의 플라스틱 입자 방출에 관한 실험적 연구)

  • Hwang, Dongwook;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.125-137
    • /
    • 2023
  • In marine environments, plastics have become more abundant due to increasing plastic use. Especially, in coastal regions, particles may remain for a long time, and they interact with flows, wind, sand and human activities. This study aimed thus to observe how plastic debris interacts with and escape from sediments. A series of experiments were conducted in order to gain a better understanding of particle release from coastal sediments into water body. An oscillating water tunnel was built for the experiments, and used to generate oscillatory flows of relatively high Reynolds number and induce sediment transport. Spherical plastic particles of three different sizes was used in lieu of plastic debris in environments. It was observed that release of the particles was directly related to change of bedform, which is in turn determined by the flow condition. Also smaller particles tend to escape the sediment more readily. Critical values for dimensionless parameters are proposed.

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel (풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구)

  • Ui-Jin Hwang;Jae-Sang Park;Myeong-Kyu Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2023
  • This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis (Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.131-137
    • /
    • 2006
  • We have investigated the properties of the Singular Spectrum Analysis (SSA) coupled with the Linear Recurrent Formula which made it possible to complement the parametric time series model. The SSA has been applied to extract the underlying properties of the principal component of hydrologic time series, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, the prediction by the SSA method can be applied to hydrologic time series governed (may be approximately) by the linear recurrent formulae. This study has examined the forecasting ability of the SSA-LRF model. These methods were applied to monthly discharge and water surface level data. These models indicated that two of the time series have good abilities of forecasting, particularly showing promising results during the period of one year. Thus, the method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

The development of a new type of functional fresh apple juice using prebiotic fibers, ginger extract, and cardamom essential oil: Antioxidant capacity and chemical analysis

  • Hamed Hassanzadeh;Mohammadyar Hosseini;Yaseen Galali;Babak Ghanbarzadeh
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.743-757
    • /
    • 2023
  • The formulation of a novel functional fresh apple juice enriched with dietary prebiotic fiber (inulin or polydextrose), ginger extract (GE), and cardamom essential oil (CEO) was carried out based on a combined D-optimal design. In the first stage, sensory evaluation was performed to screen and select the optimum sample for further experiments. The sensory evaluation showed that the sample containing inulin 0.25 g/100 g GE and 0.03 g/100 g CEO had the highest organoleptic score. In the second stage, various chemical experiments, including pH, acidity, formalin index, total phenol, flavonoids, antioxidant capacity, and vitamin C content, were evaluated on the selected enriched apple juices. The addition of GE and CEO caused changes in nutritional characteristics, including antioxidant capacity, total phenol, flavonoids, vitamin C, and IC50, from 35 g/100 g, 350 mg GAE/g, 17 mg/L, 370 mg/kg, and 1,800 mg/kg to 45 g/100 g, 460 mg GAE/g, 21 mg/L, 420 mg/kg, and 1,200 mg/kg respectively. The steady shear flow and dynamic oscillatory shear rheological tests were also performed on the screened samples, and results showed that the addition of dietary fiber in apple juices increased the apparent viscosity, storage modulus, loss modulus, and complex viscosity. In general, adding plant extracts and processed essential oil to apple juice increased the nutritional-nutraceutical value and sensory attributes of apple juice.

Plagioclase Composition of Feldspar Trachybasalt in Jeju Island (제주도 장석 조면현무암의 장석 성분에 대한 연구)

  • Yea, Nam Hee;Yun, Sung-Hyo;Koh, Jeong Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.309-333
    • /
    • 2012
  • Basalt having lots of feldspar phenocryst occurred at the northern and southern slope of the Mt. Halla, Jejudo. Among them, the Sioreum trachybasalt in southern slope consists of abundant phenocrysts of plagioclase in aphanitic groundmass. And the number of plagioclase grains are about 20 per $10cm^2$, and based on 667 grains the sizes are 13~0.7 mm (average 4.23 mm) in length and 8.6~0.5 mm (average 2.3 mm) in width. In according to modal analyses, Sioreum basaltic rock consists mainly of plagioclase (16~28%), olivine, clinopyroxene (1.5~6%) and opaque minerals (~0.1%) of magnetite and ilmenite as phenocryst and microphenocryst and groundmass (60~82%). The compositions of plagioclase, olivine and clinopyroxene are bytownite~andesine, chrysolite~hyalosiderite, augite respectively. Plagioclase phenocrysts show different type of zoning, namely, normal, reversal, patchy, oscillatory type. The An contents of zoned plagioclase mainly increase from core to rim. Those of oscillatory type from core to rim show variations of increase following decrease or decrease following increase, being more enriched in rim or almost same to core. Under the microscope, some plagioclase phenocrysts are especially melted in core part or marginal part, or found as only the remnant remain which resulted from reaction with melt. Some clinopyroxene are also corroded in margin part or found as irregular shape resulted from melting. The characteristics of petrography and compositional variation from core to rim of plagioclase and clinopyroxene, indicate that they are disequilibrium with melt and has been undergone geological environmental changes in magma batch during crystallization including magma mixing with replenishment of more mafic and high temperature melt.