• Title/Summary/Keyword: orthotropic elastic foundation

Search Result 39, Processing Time 0.019 seconds

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

The Influence on Elastic Beam for Natural Frequency of Composite Sandwich Plate (복합재료 샌드위치 판의 고유 진동수에 대한 탄성보의 영향)

  • Lee, Bong-hak;Won, Chi-moon;Lee, Jung-ho;Kim, Seong-whan
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.191-197
    • /
    • 1997
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

  • Ghannadpour, S.A.M.;Moradi, F.
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.311-324
    • /
    • 2019
  • The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.

Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions

  • Fan, Linyuan;Kong, Degang;Song, Jun;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.29-45
    • /
    • 2022
  • The optimization for dynamic response associated with a cylindrical shell which is made of laminated composites embedded in a piezoelectric layer which is subjected to temperature rises and is resting on an elastic foundation is investigated for the first time. The first shear order theory (FSDT) is utilized in order to obtain the strain relations of the shell. Then, using the energy method, the equations of motions as well as boundary condition of the problem are attained. The formulation of this study together with the solution procedure which is a numerical solution method, differential quadrature method (DQM) is validated using other researches. This paper presents a thorough study on the parameters which impacts the vibration frequency of the laminated shell. The results of this paper shows that any type of laminated composite shell can reduce the vibration frequency providing that the angle related to layer are higher than 85 degrees. Also, in order to reduce the effect of temperature rises, the laminated composites instead of orthotropic one can be used.