• Title/Summary/Keyword: orthotropic deck

Search Result 70, Processing Time 0.02 seconds

A Study on Structural Analysis of Reinforced Longitudinal Rib in Orthotropic Steel Deck Bridge (보강된 세로리브에 의한 강바닥판교의 응력변화 연구)

  • Kong, Byung-Seung;Kim, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.468-475
    • /
    • 2007
  • The Steel deck a structural analysis in head plate form change the objective bridge which it sells it accomplished a detailed structural analysis from the research which it sees and Bulk-head plate it accomplished. The length rib where the fatigue crack which is considerable generally occurs, width rib connection department and the length rib side, the width rib side it compares principal stress in the object and it does to sleep. It applied the grudge element model which it describes consequently after words and a load and a boundary condition and it executed it compared a static test and principal stress. It grasped the stress conduct of the The Steel deck petal which it follows in hand weaving rib affix location and the affix location to sleep in order to analyze a same location Bulk-head the head and comparison considered. From the detailed section which is reinforced with the stress investigation result hand weaving rib of the location which is weak in structural analysis result fatigue crack of form star reinforcement details basic form and Bulk-head the form which is reinforced with the head plate compared to principal stress investigation hour it is judged at the section which separates most.

  • PDF

Stress Concentration at Connection and Cut-Out Parts according to Existence of Scallop and Diaphragms on Orthotropic Steel Decks (강바닥판의 스캘럽·다이아프램 설치 유무에 따른 교차부·컷아웃부 응력집중)

  • Shin, Jae Choul
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.289-299
    • /
    • 2006
  • Orthotropic steel decks are manufactured by welding thin plates therefore it is inevitable that there are abundant works of welding process. On connection of transverse rib web, crossing point of longitudinal rib, transverse rib and deck plate and cut-out parts of transverse rib are the significant position of stress concentration phenomenon because of out of plane and oil-caning deformation caused by longitudinal rib distortion with shear force and distortion. In order to reduce the stress concentration phenomenon and improving fatigue performance at the crosing point and cut-out, structural analysis was performed considering the existence of scalop at conection and diaphragm which have same plane with transverse rib placed inside of longitudinal rib. Result o f the analysis show that there are the largest efect of stres concentration reduction when diaphragms are installed without scallop at connection, therefore these detail can improve the fatigue performance of orthotropic steel decks.

Local Deformation Analysis of the Orthotropic Steel Bridge Deck Due to Wheel Loadings Using FSM and FEM (윤하중에 의한 강바닥판 교면포장의 종방향균열 관련 수치해석법 개발)

  • Jeong, Jin Seok;Jung, Myung Rag;Ock, Chang Kwon;Lee, Won Tae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Longitudinally structural cracks are sometimes observed in the pavement on steel plate deck bridges because traffic truck loadings can cause large local deformations of the thin deck plate stiffened by longitudinal and transverse beams. In this study, an improved finite strip method using flat-shell strip, prism, and link elements is presented to investigate local deformations of steel decks with pavements in which flexural and torsional stiffness effects of thin floor beams are rigorously taken into account. A simplified deck model extracted from steel plate-girder bridges is analyzed using the developed FSM and the commercial FE program, ABAQUS and also, their numerical results are compared and discussed.

A Study on the Preventive Measures against Local Vibrations of Ships' Deck Panels (선체갑판(船體甲板)의 국부진동(局部振動)에 대한 방진설계(防振設計)에 관한 연구(硏究))

  • K.C.,Kim;H.M.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1981
  • To contribute to the preventive measures against local vibrations of ship's deck panels, some investigations into the prediction method of the natural frequency of the vibration of stiffened plates were done. Firstly, an analytical method based on the orthotropic plate analogy and the Rayleigh method using eigenfunctions of the Euler beam was shown, and numerical results of a regularly stiffened plate were compared with experimental results. And then, the method was extended to stiffened plates having one or two irregular stiffeners to obtain an approximate formula showing the relation between the change of the natural frequency and the size of the irregular stiffeners. The latter case was investigated for the purpose of providing a convenient design manual applicable to cure of local resonant vibrations of ships' deck panels by additional reinforcement of one or two stiffeners. In the analytical development the boundary was assumed to be rigidly supported and elastically restrained against rotation. In the experiment, however, only an extreme case i.e. simply supported boundary was investigated. The results of the investigation show that there is a fairly good conformity between the analytical results and the experimental ones in the first case, and that the approximate formula for the second case is confirmed also to be reliable for the design purpose. Considering that actual boundary conditions of deck panels in ship structures lie mostly somewhere between the simple support and the fixed, the authors discussed problems of the joint efficiency at the boundary of deck panels from the viewpoint of the practical application of the formulae.

  • PDF

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao;Wei Wang;Chen Xu;Sheraz Abbas;Zhiping Lin
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.659-674
    • /
    • 2024
  • Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs

  • Heng, Junlin;Zheng, Kaifeng;Kaewunruen, Sakdirat;Zhu, Jin;Baniotopoulos, Charalampos
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.799-813
    • /
    • 2020
  • Fatigue cracks of rib-to-deck (RD) joints have been frequently observed in the orthotropic steel decks (OSD) using conventional U-ribs (CU). Thickened edge U-rib (TEU) is proposed to enhance the fatigue strength of RD joints, and its effectiveness has been proved through fatigue tests. In-depth full-scale tests are further carried out to investigate both the fatigue strength and fractography of RD joints. Based on the test result, the mean fatigue strength of TEU specimens is 21% and 17% higher than that of CU specimens in terms of nominal and hot spot stress, respectively. Meanwhile, the development of fatigue cracks has been measured using the strain gauges installed along the welded joint. It is found that such the crack remains almost in semi-elliptical shape during the initiation and propagation. For the further application of TEUs, the design curve under the specific survival rate is required for the RD joints using TEUs. Since the fatigue strength of welded joints is highly scattered, the design curves derived by using the limited test data only are not reliable enough to be used as the reference. On this ground, an experiment-numerical hybrid approach is employed. Basing on the fatigue test, a probabilistic assessment model has been established to predict the fatigue strength of RD joints. In the model, the randomness in material properties, initial flaws and local geometries has been taken into consideration. The multiple-site initiation and coalescence of fatigue cracks are also considered to improve the accuracy. Validation of the model has been rigorously conducted using the test data. By extending the validated model, large-scale databases of fatigue life could be generated in a short period. Through the regression analysis on the generated database, design curves of the RD joint have been derived under the 95% survival rate. As the result, FAT 85 and FAT 110 curves with the power index m of 2.89 are recommended in the fatigue evaluation on the RD joint using TEUs in terms of nominal stress and hot spot stress respectively. Meanwhile, FAT 70 and FAT 90 curves with m of 2.92 are suggested in the evaluation on the RD joint using CUs in terms of nominal stress and hot spot stress, respectively.

Evaluation on Applicability of Stress Relief Hole for Improvement of Fatigue Stress Capacity of Steel Structural Details (강구조상세부의 피로저항능력 개선을 위한 응력완화홀 적용성 평가)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Kim, Kyoung Nam;Yang, Keon Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.451-461
    • /
    • 2013
  • In steel bridges, there are several details that constrain the deformation such as buckling by external forces. Most of these details which are composed of the intersection members have scallops in order to exclude the weld defects inherently and to get the ease of fabrication and also to decrease the stress concentration. In this study, stress relief hole (SRH) near stress concentration zone with detail category D or under is proposed as a method to improve the resistance on the fatigue crack initiation to detail category C. And the effects of the appropriate size and location of SRH were examined and the applicability to improve the fatigue resistance of the floorbeam web and the rib wall at rib/floorbeam intersection in the orthotropic steel deck bridge was evaluated.

Relief Hole for Improvement of Fatigue Strength in Welded Intersections of Transverse and Longitudinal Ribs in Orthotropic Deck (가로리브와 U리브 용접부의 피로강도 향상을 위한 응력완화홀)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Yang, Keon Bong;Kim, Kyoung Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.419-430
    • /
    • 2014
  • On going researches which are being made on the welded joints at the intersections of closed ribs such as U-ribs with floor-beams in ortho-tropic steel decks still have been used the shape of scallops with or with not diaphragm inside. Stress Relief Hole(SRH) being presented in this study was investigated in order to reduce the fatigue damage in the intersections of U-rib with floor-beam. Finally, it is verified that circular SRHs sufficiently relief the concentration stress at the intersections of U-rib with floor-beam and shows that SRH can be offer one of the methods that can prevent the fatigue damage in these structural details.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

A Numerical Study for Deformation Characteristics of the Wearing Surface on a Steel Plate Deck under Wheel Loads (윤하중을 받는 강바닥판 교면포장의 변형특성에 대한 수치해석적 연구)

  • Kim, Hae-Na-Rae;Ock, Chang-Kwon;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.439-447
    • /
    • 2011
  • Longitudinal cracks due to traffic truck loadings that are caused by local deformations of steel orthotropic bridge decks are sometimes observed in the wearing surface. So, underlying causes of the longitudinal pavement crack induced by structural behaviors of steel decks are investigated in this study. For this purpose, The rational finite element model of the steel deck and the pavement having the box girder is developed and a parametric study is performed by varying thickness or elastic modulus ratios of both the steel deck plate and the pavement. As a result, a large tensile strain above the webs of the u-rib and the box girder, which becomes the main cause of the cracks of the pavement, is detected from variation of the normal strain component of the wearing surface in the transverse direction.