• 제목/요약/키워드: orthotopic model

검색결과 30건 처리시간 0.023초

구강암 세포주를 이종이식한 설암의 동소위 누드마우스 모델 (An orthotopic nude mouse model of tongue carcinoma)

  • 정재승;김소미;황영선;장향란;차인호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권6호
    • /
    • pp.490-495
    • /
    • 2011
  • Introduction: Development of carcinoma on oral tongue may cause bilateral cervical lymph node metastasis, rapid invasion and growth of the cancer cells due to rich blood supply in muscle tissues. It is not only difficult to develop an animal experimental model, but also to proceed follow-up research after the development of such model as the induction of cancer lead to difficulty in taking nutrition for the experimental animals that often causes early death. Materials and Methods: IIn this study, author have transplanted YD-$10B_{mod}$ cells into nude mouse oral tongues with different cells number ($5{\times}10^4$, $5{\times}10^5$, $5{\times}10^6$ cells/mouse) and observed the development aspect of oral tongue cancers. Results: The cancer developed from orthotopic transplantation of YD-$10B_{mod}$ cells into nude mouse oral tongue show invasion and central necrosis of the tumor, similar to the cancers developed human oral tongue cancer. The difference in tumor size and the time of central necrosis development depending on the number of transplanted tumor cells shows the feasibility of extending the survival period of the nude mouse by limiting the transplanted tumor cells to < $5{\times}10^4$ cells/mouse or under per nude mouse. Conclusion: This nude mouse model could be used effectively in developing effective chemotheray agent and establishing an animal experimental model that can be used to study the mechanism of cervical lymph node metastasis of the oral tongue cancer.

정위성 비소세포폐암의 동물 모델의 개발 (Development of Animal Model for Orthotopic Non-Small Cell Lung Cancer in Nude Rat)

  • 김진국;김관만
    • Journal of Chest Surgery
    • /
    • 제30권6호
    • /
    • pp.566-572
    • /
    • 1997
  • 유전자 치료등 폐암에 대한 새로운 치료법의 개발및 그 효능의 검증에 있어 적절한 동물 모델이 없음은 큰 제 한점중의 하나이다. 특히 종양의 생물학적 특성이나 치료에의 효과등이 장기자체의 환경에 크게 영향 을 받는다는 사실은, 인체에서의 폐암의 특성을 가지며 폐에 정 위적으로 발생하는 폐암의 동물모델의 개발 을 시급하게 한다. 저자등은 Nude rat을 대상 동물로 하여, 개흉하에 종양세포 부유액을 원하는 폐말단 부위에 직접 주입함으로 폐에 정 위적으로 폐암의 발달을 유도하였으며 이를 이용하여 발생된 비소세포 폐암의 병태를 연구하였다. 종양은 실험 대상 등물에서 모두 발생하였으며 이용한 두 가지 종류의 세포주(NCI-H46O과 NCI-H1299)에서 모두 효과적으로 발생하였다. 발생된 폐종양은 시간 경과에 따라 주위 조직으로의 침윤과 종격동 전이의 양상를 보였다. 종양 숙주 동물의 평균 수명은 약 5주 정도였다. 저자등이 개발한 비소세포폐암의 동물 모델은 기관지를 통한 종양 세포 주입법에 의한 폐암 모델에 비해 국소적으로 진행된 폐암을 원하는 부위에 정확히 만들 수 있음은 물론 외과적 처치를 비롯한 국소적 치료 방법의 개발이나 ?과의 검증에 두루 이용되기에 적절하다고 사료된다.

  • PDF

Ketone ester supplementation of Atkins-type diet prolongs survival in an orthotopic xenograft model of glioblastoma

  • Hassan Azari;Angela Poff;Dominic D'Agostino;Brent Reynolds
    • Anatomy and Cell Biology
    • /
    • 제57권1호
    • /
    • pp.97-104
    • /
    • 2024
  • Heavy reliance on glucose metabolism and a reduced capacity to use ketone bodies makes glioblastoma (GBM) a promising candidate for ketone-based therapies. Ketogenic diet (KD) is well-known for its promising effects in controlling tumor growth in GBM. Moreover, synthetic ketone ester (KE) has demonstrated to increase blood ketone levels and enhance animal survival in a metastatic VM-M3 murine tumor model. Here, we compared the efficacy of a KE-supplemented Atkins-type diet (ATD-KE) to a classic KD in controlling tumor progression and enhancing survival in a clinically relevant orthotopic patient-derived xenograft GBM model. Our findings demonstrate that ATD-KE preserves body weight (percent change from the baseline; 112±2.99 vs. 116.9±2.52 and 104.8±3.67), decreases blood glucose (80.55±0.86 vs. 118.6±9.51 and 52.35±3.89 mg/dl), and increases ketone bodies in blood (1.15±0.03 mM vs. 0.55±0.04 and 2.66±0.21 mM) and brain tumor tissue (3.35±0.30 mM vs. 2.04±0.3 and 4.25±0.25 mM) comparable to the KD (results presented for ATD-KE vs. standard diet [STD] and KD, respectively). Importantly, the ATD-KE treatment significantly enhanced survival compared to the STD and was indistinguishable from the KD (47 days in STD vs. 56 days in KD and ATD-KE), suggesting that a nutritionally balanced low carbohydrate ATD combined with KE may be as effective as the KD alone in reducing brain tumor progression. Overall, these data support the rationale for clinical testing of KE-supplemented low-carb diet as an adjunct treatment for brain tumor patients.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

Development of a mouse model for pulp-dentin complex regeneration research: a preliminary study

  • Kim, Sunil;Lee, Sukjoon;Jung, Han-Sung;Kim, Sun-Young;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • 제44권2호
    • /
    • pp.20.1-20.8
    • /
    • 2019
  • Objectives: To achieve pulp-dentin complex regeneration with tissue engineering, treatment efficacies and safeties should be evaluated using in vivo orthotopic transplantation in a sufficient number of animals. Mice have been a species of choice in which to study stem cell biology in mammals. However, most pulp-dentin complex regeneration studies have used large animals because the mouse tooth is too small. The purpose of this study was to demonstrate the utility of the mouse tooth as a transplantation model for pulp-dentin complex regeneration research. Materials and Methods: Experiments were performed using 7-week-old male Institute of Cancer Research (ICR) mice; a total of 35 mice had their pulp exposed, and 5 mice each were sacrificed at 1, 2, 4, 7, 9, 12 and 14 days after pulp exposure. After decalcification in 5% ethylenediaminetetraacetic acid, the samples were embedded and cut with a microtome and then stained with hematoxylin and eosin. Slides were observed under a high-magnification light microscope. Results: Until 1 week postoperatively, the tissue below the pulp chamber orifice appeared normal. The remaining coronal portion of the pulp tissue was inflammatory and necrotic. After 1 week postoperatively, inflammation and necrosis were apparent in the root canals inferior to the orifices. The specimens obtained after experimental day 14 showed necrosis of all tissue in the root canals. Conclusions: This study could provide opportunities for researchers performing in vivo orthotopic transplantation experiments with mice.

Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development

  • Jung, Joohee
    • Toxicological Research
    • /
    • 제30권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Xenograft models of human cancer play an important role in the screening and evaluation of candidates for new anticancer agents. The models, which are derived from human tumor cell lines and are classified according to the transplant site, such as ectopic xenograft and orthotopic xenograft, are still utilized to evaluate therapeutic efficacy and toxicity. The metastasis model is modified for the evaluation and prediction of cancer progression. Recently, animal models are made from patient-derived tumor tissue. The patient-derived tumor xenograft models with physiological characters similar to those of patients have been established for personalized medicine. In the discovery of anticancer drugs, standard animal models save time and money and provide evidence to support clinical trials. The current strategy for using xenograft models as an informative tool is introduced.

Antivascular Therapy via Inhibition of Receptor Tyrosine Kinases in an Orthotopic Murine Model of Salivary Adenoid Cystic Carcinoma

  • Park, Young-Wook;Kang, Hye-Jeong;Park, Jung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.59-70
    • /
    • 2008
  • Purpose: We evaluated the therapeutic effect of AEE788, a dual inhibitor of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) receptor tyrosine kinases on human salivary adenoid cystic carcinoma (ACC) cells growing in nude mice. Experimental Design: We examined the effects of AEE788 on salivary ACC cell growth and apoptosis. To determine the in vivo effects of AEE788, nude mice with orthotopic parotid tumors were randomized to receive oral AEE788 (50 mg/kg) three times per week, injected paclitaxel ($200{\mu}g$) once per week, AEE788 plus paclitaxel, or placebo. Mechanisms of in vivo AEE788 activity were determined by immunohistochemical analysis. Results: Treatment of salivary ACC cells with AEE788 led to growth inhibition and induction of apoptosis. AEE788 inhibited tumor growth and prevented lung metastasis in nude mice. Furthermore, AEE788 potentiated growth inhibition and apoptosis of ACC tumor cells mediated by paclitaxel. Tumors of mice treated with AEE788 and AEE788 plus paclitaxel exhibited down-regulation of activated EGFR and its downstream mediators (Akt and MAPK), increased tumor and endothelial cell apoptosis, and decreased microvessel den-sity, which correlated with a decrease in the level of MMP-9, MMP-2 and bFGF expression and a decrease in the incidence of vascular metastasis. Conclusions: These data show that tumor-associated endothelial cells are important in the process of tumor-metastasis. And VEGFR can be a molecular target for therapy of metastatic lung lesion of salivary ACC.

Design of A Human Model of the Moving-Actuator Type Total Artificial Heart

  • Chang, Jun-Keun;Min, Byoung-Goo
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권1호
    • /
    • pp.65-70
    • /
    • 1997
  • A human version of Korean total artificial heart(TAM) was designed basso on the magnetic resonance imaging(MRI) data To obtain accurate measurement or human thoracic structure including the valvular sited we analyzed the dimensions of the natural heart of healthy persons and cardiomyopathy(CM) patients. The MRI findings were analyzed to measure the volume of the thoracic cavity that would be occupied by the TAM. The design upgrade of the mechanical performed was also performed with the computer aided design(CAD) system to develop a new version of Korean TAH.

  • PDF

Asparagus Polysaccharide and Gum with Hepatic Artery Embolization Induces Tumor Growth and Inhibits Angiogenesis in an Orthotopic Hepatocellular Carcinoma Model

  • Weng, Ling-Ling;Xiang, Jian-Feng;Lin, Jin-Bo;Yi, Shang-Hui;Yang, Li-Tao;Li, Yi-Sheng;Zeng, Hao-Tao;Lin, Sheng-Ming;Xin, Dong-Wei;Zhao, Hai-Liang;Qiu, Shu-Qi;Chen, Tao;Zhang, Min-Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10949-10955
    • /
    • 2015
  • Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy.

Establishment of a [18F]-FDG-PET/MRI Imaging Protocol for Gastric Cancer PDX as a Preclinical Research Tool

  • Bae, Seong-Woo;Berlth, Felix;Jeong, Kyoung-Yun;Suh, Yun-Suhk;Kong, Seong-Ho;Lee, Hyuk-Joon;Kim, Woo Ho;Chung, June-Key;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • 제20권1호
    • /
    • pp.60-71
    • /
    • 2020
  • Purpose: The utility of 18-fluordesoxyglucose positron emission tomography ([18F]-FDG-PET) combined with computer tomography or magnetic resonance imaging (MRI) in gastric cancer remains controversial and a rationale for patient selection is desired. This study aims to establish a preclinical patient-derived xenograft (PDX) based [18F]-FDG-PET/MRI protocol for gastric cancer and compare different PDX models regarding tumor growth and FDG uptake. Materials and Methods: Female BALB/c nu/nu mice were implanted orthotopically and subcutaneously with gastric cancer PDX. [18F]-FDG-PET/MRI scanning protocol evaluation included different tumor sizes, FDG doses, scanning intervals, and organ-specific uptake. FDG avidity of similar PDX cases were compared between ortho- and heterotopic tumor implantation methods. Microscopic and immunohistochemical investigations were performed to confirm tumor growth and correlate the glycolysis markers glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) with FDG uptake. Results: Organ-specific uptake analysis showed specific FDG avidity of the tumor tissue. Standard scanning protocol was determined to include 150 μCi FDG injection dose and scanning after one hour. Comparison of heterotopic and orthotopic implanted mice revealed a long growth interval for orthotopic models with a high uptake in similar PDX tissues. The H-score of GLUT1 and HK2 expression in tumor cells correlated with the measured maximal standardized uptake value values (GLUT1: Pearson r=0.743, P=0.009; HK2: Pearson r=0.605, P=0.049). Conclusions: This preclinical gastric cancer PDX based [18F]-FDG-PET/MRI protocol reveals tumor specific FDG uptake and shows correlation to glucose metabolic proteins. Our findings provide a PET/MRI PDX model that can be applicable for translational gastric cancer research.