• Title/Summary/Keyword: orthophoto

Search Result 107, Processing Time 0.023 seconds

Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph (무인항공 사진촬영을 통한 비금속 노천광산 정밀 수치지형모델 구축)

  • Cho, Seong-Jun;Bang, Eun-Seok;Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.205-212
    • /
    • 2015
  • We have verified applicability of UAV(Unmanned Aerial Vehicle) photogrammetry to a mining engineering. The test mine is a smectite mine located at Gyeongju city in Gyeongnam province, Koera. 448 photos over area of $600m{\times}380m$ were taken with overlapped manner using Cannon Mark VI equipped to multicopter DJI S1000, which were processed with AgiSoft Photoscan software to generate orthophoto and DEM model of the study area. photogrammetry data with 10 cm resolution were generated using 6 ground control positions, which were exported to the 3D geological modeling software to make a topographic surface object. Monitoring of amount of ore production and landsliding could be done with less than 1 hours photographing as well as low cost. A direct link between UAV photogrammetry and 3D geological modeling technology might increase productivity of a mine due to appling the topographical surface change immediately according to the mining operation.

The Construction of 3D Spatial Imagery Information of Dam reservoir using LiDAR and Multi Beam Echo Sounder (LiDAR와 MBES를 이용한 댐 저수지 3차원 공간영상정보 구축)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • Recently, the construction of three dimensional spatial information of Dam reservoir area is very important part in Dam management work such as sediment survey, but it is difficult to acquire detailed terrain data because totalstation and single beam echo sounder are applied to terrain survey. This study presented method to construct detailed terrain data of Dam reservoir area using LiDAR and multi beam echo sounder. First, LiDAR survey was carried out in land zone and calibration process was applied by ground control point. And also the DEM of land zone was constructed by using algorithm, which eliminated building and vegetation class. As the result of validation of LiDAR DEM using GPS terrain survey, it was possible to construct three dimensional terrain data that was satisfied with the tolerance error of LiDAR, which was the standard error of LiDAR DEM showed as 0.108m. Also multi beam echo sounder was applied to the survey of water zone and it could construct spatial information that was satisfied with bathymetry surveying tolerance error of International Hydrographic Organization by validation with terrain survey data. And LiDAR and multi beam echo sounder data were integrated and it was possible to construct three dimensional spatial imagery information that can be applied to Dam management work such as the estimation of sediment amounts or the monitoring of terrain change by linking with high resolution orthophoto.

REMOTE SENSING AND GIS INTEGRATION FOR HOUSE MANAGEMENT

  • Wu, Mu-Lin;Wang, Yu-Ming;Wong, Deng-Ching;Chiou, Fu-Shen
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.551-554
    • /
    • 2006
  • House management is very important in water resource protection in order to provide sustainable drinking water for about four millions population in northern Taiwan. House management can be a simple job that can be done without any ingredient of remote sensing or geographic information systems. Remote sensing and GIS integration for house management can provide more efficient management prescription when land use enforcement, soil and water conservation, sewage management, garbage collection, and reforestation have to be managed simultaneously. The objective of this paper was to integrate remote sensing and GIS to manage houses in a water resource protection district. More than four thousand houses have been surveyed and created as a house data base. Site map of every single house and very detail information consisting of address, ownership, date of creation, building materials, acreages floor by floor, parcel information, and types of house condition. Some houses have their photos in different directions. One house has its own card consists these information and these attributes were created into a house data base. Site maps of all houses were created with the same coordinates system as parcel maps, topographic maps, sewage maps, and city planning maps. Visual Basic.NET, Visual C#.NET have been implemented to develop computer programs for house information inquiry and maps overlay among house maps and other GIS map layers. Remote sensing techniques have been implemented to generate the background information of a single house in the past 15 years. Digital orthophoto maps at a scale of 1:5000 overlay with house site maps are very useful in determination of a house was there or not for a given year. Satellite images if their resolutions good enough are also very useful in this type of daily government operations. The developed house management systems can work with commercial GIS software such as ArcView and ArcPad. Remote sensing provided image information of a single house whether it was there or not in a given year. GIS provided overlay and inquiry functions to automatically extract attributes of a given house by ownership, address, and so on when certain house management prescriptions have to be made by government agency. File format is the key component that makes remote sensing and GIS integration smoothly. The developed house management systems are user friendly and can be modified to meet needs encountered in a single task of a government technician.

  • PDF

A Study on Forest Inventory Method Using Aerial Photographs (항공사진(航空寫眞)을 이용(利用)한 산림조사(山林調査) 방법(方法)에 관한 연구(硏究))

  • Lee, Chun Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.10-16
    • /
    • 1983
  • This survey was carried out in Schneegattern Forest District which is located 40 km northeast of Salzburg, Austria. The purpose of interpretation with two sampling methods, stratified sampling and unstratified sampling, on B & W infrared photos, with a scale of 1:10,000 was to know coniferous stand volumn and to reduce the cost, Forest stands were classified into 4 groups; those were non-forest, young stands, beech, coniferous stands. Coniferous and beech stands were devided into age classes I (41-80 years), II (above 81 years). After this delineation sample points were designated on the orthophoto map whose data were transferred from the aerial photos. The volumn data were calculated from DBH using relascope in the field and the results were as follows. 1) Coniferous stand volumn per hactare was ($470{\pm}31.9m^3$ 2) The diameter distribution of $C_1$ was binomial, but $C_2$ showed normal distribution. 3) The stratified sampling method was better than unstratified sampling method.

  • PDF

Manufacture Lenticular Map of Golf Courses Using Digital Orthophoto (수치정사영상을 이용한 렌티큘러 코스맵 제작)

  • Kim, Kam-Lae;Cheong, Hae-Jin;Cho, Won-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.475-482
    • /
    • 2007
  • Most golfers believe that knowing yardages will improve their score. Certainly it helps with club selection. But, simple "Graphic" yardage guides being notorious for error and inaccuracies, which a serious golfer will pick immediately, only serve to erode the players enjoyment and ultimately, golf course satisfaction. Someone believes with low-level aerial photographic images, golfer will be impressed with the accuracy of the depiction, helping them play a more confident game. But, there are no mapping products in true 3-D available in the world that allows a golfer to determine shot distances in yards or meters. So, we suggest an lenticular technology for real 3-D display as a viable alternative to conventional image map solution. This technology is an image display method for the generation of multi-image effects like 3D visualization or animation. This methodology is cutting edge stereoscopic image which overcomes the limitation of conventional photo tech by recomposing and producing 3 dimensional images. A significant strength of this methods its versatility concerning display effects. The main use of the hardcopy 3-D lenticular displays is in the fields of science, education, planning, and representation. This paper gives a concise overview of the lenticular foil technology and describes the production of the true 3-D yardage book of golf courses. For this study, 3-D effects are achieved and evaluated with the lenticular display by incorporation multiple synthetic images based on digital topographic terrain model and by using the two images of the actual stereopair.

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

An Evaluation Scheme on Feasibility in Public Sector for 3D Geo-Spatial Information - Focusing on Production of Digital Mapping (3차원 공간정보의 공공부문 사업성 평가 방안 - 2차원 수치지도 제작 업무를 대상으로)

  • Joo, Yong Jin;Kim, Kang Soo;Hahm, Chang Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.73-82
    • /
    • 2012
  • In order to carry out efficient investment and successful business in national geo-spatial industry, economic assessment on the field of 3D geo-information has recently emerged as a serious issue. Therefore, this study is intended to offer cost-effective evaluation scheme which are proper for 3D geo-spatial information, especially focusing on development of orthophoto and DEM. The study is organized as follows. The first section clarifies preliminary rules for feasibility by defining target work and category in order to estimate benefit. Then, this paper will be limited to consideration of production of digital mapping for target business which is expected to create high value and its benefit from cost reduction is suggested. Drawing from the AHP(Analytic Hierarchy Process) methods, this study comprehensively described final result and implication to examine business value. Consequently, this study can suggest economical evaluation methods on 3D geo-spatial information industry, which takes up a considerable part of immaterial benefit and has difficulties in economic assessment and estimation. preventing a variety of errors in system operation in advance.

Experimental Applicability Evaluation for Renewal and Modification Task of Digital Topographic Map by Low-Cost Drone Acquired Images (저가형 드론영상을 이용한 수치지형도 수정·갱신업무 적용 가능성 실험 평가)

  • YUN, Bu-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.115-125
    • /
    • 2017
  • In current, as the release of national base map with an equivalent scale and accuracy for the whole territory areas in South Korea, rapid spatial information industry such as national land development, GIS, and car navigation are used in a variety of spatial information industry as decision making method, and a lot of research and policies are proposed for the wide expansion of spatial information industry. For this, as of 2013, it contributes to the latest trend of spatial information field in order to solve the problems for the latest trend of spatial information, replacing modification of base maps as dividing the whole territory to zone with policy transformation by ordinary modifications. Therefore, this paper evaluates the possibility of modification and renewal of national base maps(scale: 1:5,000) using drones which currently get the limelight from a variety of research fields and industries. In particular, as a result of overlapping orthophoto, 3D point clouds extracted from images acquired by low-cost drones, and digital maps which are applied for the tasks of modification and renewal, it presents 0.2m precision and 0.1m accuracy. This means that drone-based photorgammetry technique can be fully utilized in the tasks of digital map modification and renewal because it conforms the error range of work regulation in making the national base maps(scale 1: 5000).

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.

Automatic Extraction of Training Dataset Using Expectation Maximization Algorithm - for Automatic Supervised Classification of Road Networks (기대최대화 알고리즘을 활용한 도로노면 training 자료 자동추출에 관한 연구 - 감독분류를 통한 도로 네트워크의 자동추출을 위하여)

  • Han, You-Kyung;Choi, Jae-Wan;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.289-297
    • /
    • 2009
  • In the paper, we propose the methodology to extract training dataset automatically for supervised classification of road networks. For the preprocessing, we co-register the airborne photos, LIDAR data and large-scale digital maps and then, create orthophotos and intensity images. By overlaying the large-scale digital maps onto generated images, we can extract the initial training dataset for the supervised classification of road networks. However, the initial training information is distorted because there are errors propagated from registration process and, also, there are generally various objects in the road networks such as asphalt, road marks, vegetation, cars and so on. As such, to generate the training information only for the road surface, we apply the Expectation Maximization technique and finally, extract the training dataset of the road surface. For the accuracy test, we compare the training dataset with manually extracted ones. Through the statistical tests, we can identify that the developed method is valid.