• Title/Summary/Keyword: orthogonal type

Search Result 276, Processing Time 0.023 seconds

Optimal Blasting Conditions for Surface Profile when Micro Particle Blasting by Statistical Analysis of Orthogonal Arrays (미세입자 분사가공시 직교배열표의 통계적 분석에 의한 표면형상의 최적 분사 조건)

  • Kwon, Dae-Gyu;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.148-154
    • /
    • 2016
  • A study on the micro particle blasting was conducted to find the optimum conditions of the blasted surface of aluminum 6061. The particle type such as $Al_2O_3$ and SiC, nozzle diameter, pressure, standoff distance and injection time were used as blasting conditions. Statistical method of orthogonal arrays(ANOVA) was used to find optimum conditions of maximum depth and maximum diameter of blasted surface. Particle type, nozzle diameter, and pressure were found to be the main factors of maximum blasted depth and diameter. Maximum blasted diameter was affected by increasing pressure and nozzle diameter but saturated maximum diameter. Maximum blasted depth was affected by pressure and nozzle diameter when aluminum 6061 was blasted with $Al_2O_3$ particle. The value of surface roughness was increased as pressure and nozzle diameter increased when aluminum 6061 was blasted with SiC.

A NOTE ON THE PARAMETRIZATION OF MULTIWAVELETS OF DGHM TYPE

  • Hwang, Seok-Yoon
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.1037-1042
    • /
    • 2011
  • Multiwavelet coefficients can be constructed from the multi-scaling coefficients by using the factorization for paraunitary matrices. In this paper we present a procedure for parametrizing all possible multi-wavelet coefficients corresponding to the multiscaling coefficients of DGHM type.

M-1-1 Cooperative Protocol Based on OSOC-SS to Improve Bandwidth Utilization in USN

  • Kong, Hyung-Yun;Hwang, Yun-Kyeong
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.41-46
    • /
    • 2008
  • A bandwidth and power efficient high speed ubiquitous sensor network(USN) for realizing a ubiquitous society is a great challenge for researcher community. In this paper we incorporate a cooperative transmission protocol within a special type of multi-code modulation to meet these requirements. Multi-code(Mc) modulation has been developed for high-speed data transmission over wireless channels. We proposed a new class of orthogonal codes for multi-code modulation which is an orthogonal subset of orthogonal codes(OSOC). Our proposed OSOC structure allows us to use only one relay to cooperate M nodes that effectively reduces the bandwidth and power requirement. This protocol is similar to spread-spectrum(SS) technique that can reduce both broad and narrow band jamming.

A Low-Complexity Frequency Offset Estimation Scheme Based on Partial Periodogram for OFDM-Based CR Systems (OFDM 기반 CR 시스템을 위한 부분 주기도표 기반의 저복잡도 주파수 옵셋 추정 기법)

  • Chong, Da-Hae;Park, Jong-In;Bae, Jin-Soo;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10C
    • /
    • pp.635-640
    • /
    • 2011
  • This paper proposes a frequency offset estimation scheme with low-complexity for orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. The proposed scheme is applicable to any type of training symbol and has a lower complexity than the scheme in [9] by using the partial periodogram. Simulation results show that the estimation performance of the proposed scheme is almost the same as that of the scheme in [9].

Surface Type Detection and Parameter Estimation in Point Cloud by Using Orthogonal Distance Fitting (최단거리 최소제곱법을 이용한 측정점군으로부터의 곡면 자동탐색)

  • Ahn, Sung-Joon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Surface detection and parameter estimation in point cloud is a relevant subject in CAD/CAM, reverse engineering, computer vision, coordinate metrology and digital factory. In this paper we present a software for a fully automatic surface detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting, which work interactively. Our newly developed algorithms for orthogonal distance fitting(ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. We demonstrate the performance of the software on a variety of point clouds generated by laser radar, computer tomography, and stripe-projection method.

A Study of Cutting Factor Analysis and Reliability Evaluation of ASTM(F136-96) Material by Taguchi Method (다구치 방법에 의한 ASTM(F136-96)의 절삭인자 분석과 신뢰성 평가)

  • Jang, Sung-Minl;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Machine operator and quality are affected by chip during cutting process to product machine parts. This paper presents a study of the influence of cutting conditions on the surface roughness obtained by turning using Taguchi method for safety of turning operator. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of its low thermal conductivity and chemical reactivity. Therefore titanium alloys are known as difficult-to materials. An orthogonal array, the signal-to-noise ratio, the analysis of variance are employed to investigate the cutting characteristics of implant material bars using tungsten carbide cutting tools of throwaway type. Also Experimental results by orthogonal array are compared with optimal condition to evaluate advanced reliability. Required simulations and experiments are performed, and the results are investigated.

Analysis of 2-Dimensional Shallow Water Equations Using Multigrid Method and Coordinate Transformation

  • Lee, Jong-Seol;Cho, Won-Cheol
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Various numerical methods for the two dimensional shallow water equations have been applied to the problems of flood routing, tidal circulation, storm surges, and atmospheric circulation. These methods are often based on the Alternating Direction Implicity(ADI) method. However, the ADI method results in inaccuracies for large time steps when dealing with a complex geometry or bathymetry. Since this method reduces the performance considerably, a fully implicit method developed by Wilders et al. (1998) is used to improve the accuracy for a large time step. Finite Difference Methods are defined on a rectangular grid. Two drawbacks of this type of grid are that grid refinement is not possibile locally and that the physical boundary is sometimes poorly represented by the numerical model boundary. Because of the second deficiency several purely numerical boundary effects can be involved. A boundary fitted curvilinear coordinate transformation is used to reduce these difficulties. It the curvilinear coordinate transformation is used to reduce these difficulties. If the coordinate transformation is orthogonal then the transformed shallow water equations are similar to the original equations. Therefore, an orthogonal coorinate transformation is used for defining coordinate system. A multigrid (MG) method is widely used to accelerate the convergence in the numerical methods. In this study, a technique using a MG method is proposed to reduce the computing time and to improve the accuracy for the orthogonal to reduce the computing time and to improve the accuracy for the orthogonal grid generation and the solutions of the shallow water equations.

  • PDF

An equivalent linearization method for nonlinear systems under nonstationary random excitations using orthogonal functions

  • Younespour, Amir;Cheng, Shaohong;Ghaffarzadeh, Hosein
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.139-149
    • /
    • 2018
  • Many practical engineering problems are associated with nonlinear systems subjected to nonstationary random excitations. Equivalent linearization methods are commonly used to seek for approximate solutions to this kind of problems. Compared to various approaches developed in the frequency and mixed time-frequency domains, though directly solving the system equation of motion in the time domain would improve computation efficiency, only limited studies are available. Considering the fact that the orthogonal functions have been widely used to effectively improve the accuracy of the approximated responses and reduce the computational cost in various engineering applications, an orthogonal-function-based equivalent linearization method in the time domain has been proposed in the current paper for nonlinear systems subjected to nonstationary random excitations. In the numerical examples, the proposed approach is applied to a SDOF system with a set-up spring and a SDOF Duffing oscillator subjected to stationary and nonstationary excitations. In addition, its applicability to nonlinear MDOF systems is examined by a 3DOF Duffing system subjected to nonstationary excitation. Results show that the proposed method can accurately predict the nonlinear system response and the formulation of the proposed approach allows it to be capable of handling any general type of nonstationary random excitations, such as the seismic load.

Type I projection sum of squares by weighted least squares (가중최소제곱법에 의한 제1종 사영제곱합)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.423-429
    • /
    • 2014
  • This paper discusses a method for getting Type I sums of squares by projections under a two-way fixed-effects model when variances of errors are not equal. The method of weighted least squares is used to estimate the parameters of the assumed model. The model is fitted to the data in a sequential manner by using the model comparison technique. The vector space generated by the model matrix can be composed of orthogonal vector subspaces spanned by submatrices consisting of column vectors related to the parameters. It is discussed how to get the Type I sums of squares by using the projections into the orthogonal vector subspaces.