• Title/Summary/Keyword: orthogonal rotation

Search Result 116, Processing Time 0.023 seconds

On an optimum positioning of multivariate data using an orthogonal rotation technique (직교회전기법에 의한 다차원자료 포지셔닝의 최적화방법)

  • Yoo, Hee-Kyung;Choi, Shin-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2054-2061
    • /
    • 2010
  • This paper suggests an algorithm for optimal positioning individuals(or observations) with p-dimensional measurements into coordinates of a two dimensional space. A criterion for optimizing the rotation is taken as the consistency of the grouping result obtained by the cluster analysis. This paper introduces the criterion and a transformation matrix for the orthogonal rotation. The criterion of the optimal positioning is that standard groups are placed in each quadrant of the positioning. An optimal angle of the orthogonal rotation is investigated and found by this criterions.

Non-Orthogonal Multiple Access based Phase Rotation Index Modulation (비직교 다중 접속 기반 위상 회전 인덱스 변조 기법)

  • Lee, Hye Yeong;Shin, Soo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Non-orthogonal multiple access is the promised candidates in the next generation wireless networks to improve the spectral efficiency by superposing multiple signals. In general, the superposition coding is performed using the difference in channel gain between users based on the user's power allocation. However, when user pairs have the similar channel gain problem, NOMA can not be allowed in the scenario. To overcome this problem, phase rotation based NOMA is presented to increase minimum distance between superposed signals in the constellation point. This paper proposed a novel non-orthogonal multiple access based index modulation using phase rotation. The additional bits can transfer using the index bits that is allocated according to the activated state of the phase rotation. Simulation results are shown that bit error rate and achievable sum rate are better than conventional NOMA.

Design and Implementation of OFDM Frequency Offset Synchronization Block Using CORDIC (CORDIC을 이용한 OFDM 주파수 옵셋 동기부 설계 및 구현)

  • Jang, Young-Beom;Han, Jae-Woong;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.118-125
    • /
    • 2008
  • In this paper, an efficient frequency offset synchronization structure for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. Conventional CORDIC(Coordinate Rotation Digital Computer) algorithm for frequency offset synchronization utilizes two CORDIC hardware i.e., one is vector mode for phase estimation, the other is rotation mode for compensation. But proposed structure utilizes one CORDIC hardware and divider. Through simulation, it is shown that hardware implementation complexity is reduced compared with conventional structures. The Verilog-HDL coding and front-end chip implementation results for the proposed structure show 22.1% gate count reduction comparison with those of the conventional structure.

Flexural-Torsional Coupled Vibration of Slewing Beams Using Various Types of Orthogonal Polynomials

  • Kapania Rakesh K.;Kim, Yong-Yook
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1790-1800
    • /
    • 2006
  • Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance of various orthogonal polynomials is compared to each other in terms of their efficiency and accuracy in determining the required natural frequencies. Orthogonal polynomials and functions studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions and rotation are studied for their natural frequencies. The obtained natural frequencies and mode shapes are compared to those available in various references and the results for coupled flexural-torsional vibrations are especially compared to both previously available references and with those obtained using NASTRAN finite element package. Among all the examined orthogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU time, mainly because of ease in performing the integration required for determining the stiffness and mass matrices.

Low-power Frequency Offset Synchronization for IEEE 802.11a Using CORDIC Algorithm (CORDIC을 이용한 IEEE 802.11a용 저전력 주파수 옵셋 동기화기)

  • Jang, Young-Beom;Han, Jae-Woong;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.66-72
    • /
    • 2009
  • In this paper, an efficient frequency offset synchronization structure for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. Conventional CORDIC(Coordinate Rotation Digital Computer) algorithm for frequency offset synchronization utilizes two CORDIC hardware i.e., one is vector mode for phase estimation, the other is rotation mode for compensation. But proposed structure utilizes one CORDIC hardware and divider. Through simulation, it is shown that hardware implementation complexity is reduced compared with conventional structures. The Verilog-HDL coding and front-end chip implementation results for the proposed structure show 22.1% gate count reduction comparison with those of the conventional structure.

Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation (엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

Quasi-Orthogonal STBC with Iterative Decoding in Bit Interleaved Coded Modulation

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.426-433
    • /
    • 2008
  • In this paper, we present a method to improve the performance of the four transmit antenna quasi-orthogonal space-time block code (STBC) in the coded system. For the four transmit antenna case, the quasi-orthogonal STBC consists of two symbol groups which are orthogonal to each other, but intra group symbols are not. In uncoded system with the matched filter detection, constellation rotation can improve the performance. However, in coded systems, its gain is absorbed by the coding gain especially for lower rate code. We propose an iterative decoding method to improve the performance of quasi-orthogonal codes in coded systems. With conventional quasi-orthogonal STBC detection, the joint ML detection can be improved by iterative processing between the demapper and the decoder. Simulation results shows that the performance improvement is about 2dB at 1% frame error rate.

A New Technique for Whole Craniospinal Irradiation (WCSI) (새로운 전중추신경 방사선 조사법 ; 방사선속의 발산에 의한 선량의 불균일성을 극복하기 위한 치료 방법)

  • Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.159-164
    • /
    • 1991
  • To irradiate the entire neuroaxis, bilateral parallel opposed brain fields and direct posterior spinal field have been utilized and radiation dose at the junction between abutting fields has been extensilvely studied. And several workable methods were reported to achieve uniform dose at a desired depth at the juction between abutting fields whose central axis are coplanar. But the dose distribhution at the juction of orthogonal fields has been a persistent problem in radiation oncology. Author describes a new method to solve the junction problem between abutting fields whose central axis are orthogonal. Author utilized split beam/comllimator rotation or collimator/couch rotation to avoid hot or cold spots that may arise from beam divergence. Author achieved accurate and homogeneous dose distribution by mathching the $50\%$ isodose line at the junction between orthogonal central axis beam fields.

  • PDF

A Study on the Actual Condition of Curriculum Composition by Factor Analysis (요인분석(要因分析)에 의한 교과목편성(教科目編成)의 실태분석(實態分析)에 관(關)한 연구(硏究))

  • Lee, Sun-Yo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.4 no.2
    • /
    • pp.49-58
    • /
    • 1978
  • The purpose of this study was to analyze the actual condition of curriculum composition by factor analysis, then to find out the peculiarity of each factor through factor loading. The method adopted here is to classify and arrange the curricula in accordance with the similarity of each subject, to put it into computer, and to get 16 factors whose eigenvalues are at least 1.00. Consequentely, before the orthogonal rotation 67% of the curricula which have the given factors and maximum factor loading were distributed from factor 1 to factor 4, and after orthogonal rotation 45% of the curricula were distribued.

  • PDF

An Orthogonal Phase-Superimposed Peak-to-Average Power Ratio Reduction Technique

  • Han, Tae-Young;Kim, Nam;Choi, Jung-Hun;Lee, Jae-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.169-174
    • /
    • 2007
  • This paper presents a method of superimposing the rotation phases over the pilot and data symbols in order to reduce the peak-to-average power ratio(PAPR) in orthogonal frequency division multiplexing(OFDM). The phases of the rotation vector are added to those of the pilot symbols and those of the data symbols by interlaying them between any two pilot symbols. The receiver restores the data symbols by utilizing the channel estimation of the pilot symbols. Therefore, the bandwidth efficiency is improved by not using the subcarriers that are assigned for the reduction of the PAPR. Also, the enormous increase of the bit error rate which would be caused by incorrectly receiving the side information, i.e. the phases of the rotation vector, is prevented. The simulation results of the bit error rate performance for the BPSK are given using the COST-207 channel model.