• 제목/요약/키워드: orthoferrite

검색결과 14건 처리시간 0.017초

$Nd_{1-x}Ba_xFeO_{3-y}$계의 비화학량론과 물리적 성질에 관한 연구 (A Study of the Nonstoichiometry and Physical Properties of the Nd1-xBaxFeO3-y System)

  • 장순호;유광현;김성진;최승철;장순호
    • 대한화학회지
    • /
    • 제38권8호
    • /
    • pp.547-551
    • /
    • 1994
  • $Nd_{1-x}Ba_xFeO_{3-y}$계에 대한 각 조성의 시료를 1200$^{\circ}C$ 대기압하에서 반응물을 가열하여 합성하였고 X-선 분말 회절분석을 통하여 고용체가 합성되었음을 확인하였다. X-선 회절분석 결과 x = 0.00과 0.25는 팔면체장이 뒤틀린 orthoferrite형의 사방정계이며, x = 0.50과 0.75의 조성을 갖는 화합물은 단순입방정계이다. 고용체내의 Fe이온은 $Fe^{3+}$$Fe^{4+}$이온의 혼합원자가 상태로 존재하기 때문에 $Fe^{4+}$이온의 몰비와 산소공위로부터 비화학량론적 조성식들을 결정하였다. Mossbauer분광분석결과 A자리에 $Ca^{2+}$ 또는 $Sr^{2+}$ 이온이 치환된 계들과는 달리 $Ba^{2+}$ 이온이 치환된 화합물들은 $FeO_6$$FeO_4$ 뿐만 아니라 $FeO_5$이 5배위장이 형성됨을 알 수 있었다. 또한 x = 0.25와 0.50 조성들은 초상자성의 스펙트럼을 보이는데 이는 $Fe^{3+}$$Fe^{4+}$ 이온간의 강자성 상호작용을 하는 영역을 형성하기 때문이다. 모든 시료의 전기전도도는 반도성 범위에 속한다. 시료는 $O^{2-}$ 이온을 매개로 한 Fe 이온간의 전자전달과정에서 $Fe^{4+}$ 이온은 전자 받게 준위로 작용하기 때문에 $Fe^{4+}$이온이 증가함에 따라 전기전도도의 활성화에너지가 감소된다.

  • PDF

Preparation and properties of multiferroic bismuth iron oxides

  • Nam, Joong-Hee;Joo, Yong-Hui;Cho, Jeong-Ho;Chun, Myoung-Pyo;Kim, Byung-Ik
    • 한국결정성장학회지
    • /
    • 제19권2호
    • /
    • pp.66-69
    • /
    • 2009
  • The compositional dependence of bismuth iron oxides and effect of La-substitutions in the structure of $BiFeO_3$ compounds were investigated, which compounds were synthesized by conventional ceramic processing. It is shown that some of bismuth iron oxides including $BiFeO_3$ show the narrow single phase region. The effect of La-doping in $BiFeO_3$ was presented as disappearance of many impurity phases of Bi-Fe-O compounds. The lower electrical resistivity was obtained as those compositions of Fe deficient region and La-doped $BiFeO_3$. The saturation magnetization of La-doped $BiFeO_3$ was increased with La content. The dielectric dispersion was also observed for those Bi-Fe-O compounds with Fe deficient and La-doped $BiFeO_3$ at low frequencies under 1 kHz.

Effects of Ga Substitution in LaFe1-xGaxO3 (χ= 0, 0.1, 0.3, 0.5, and 0.7)

  • Yoon, Sung-Hyun;Park, Seung-Jin;Cha, Deok-Joon;Min, Byung-Ki;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • 제7권2호
    • /
    • pp.40-44
    • /
    • 2002
  • Crystallographic and magnetic properties of ;$LaFe_{1-x}Ga_xO_3$($\chi$= 0, 0.1, 0.3, 0.5, and 0.7) were studied using XRD and Mossbauer spectroscopy. The crystal structures were found to be orthorhombic and the lattice parameters $\alpha$, b, and c were found to decrease with increasing Ga substitution. M$\ddot{o}$ssbauer spectra were obtained at various absorber temperatures ranging from 20 K to 750 K. The M$\ddot{o}$ssbauer spectra were all sextets below $T_N$ and were all singlets above $T_N$. Asymmetric broadening of the M$\ddot{o}$ssbauer spectral lines at 20 K was explained by the multitude of possible environments for an iron nucleus. As the temperature increases to $T_N$, a systematic line broadening in M$\ddot{o}$ssbauer spectra was observed and interpreted to originate from different temperature dependencies of the magnetic hyperfine fields at various iron sites.

Study of Nonstoichiometry and Physical Properties of the $Ca_xEu_{1-x}FeO_{3-y}$ System

  • Roh, Kwon-Sun;Ryu, Kwang-Sun;Ryu, Kwang-Hyun;Yo, Chul-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권7호
    • /
    • pp.541-545
    • /
    • 1994
  • A series of samples of the ${Ca_xEu_{1-x}FeO_{3-y}$ (x=0.00, 0.25, 0.50, 0.75, and 1.00) system has been prepared at $1,250^{\circ}C$ under an atmospheric air pressure. X-ray diffraction analysis of the solid solution assigns the structure of the compositions of x=0.00, 0.25, 0.50, and 0.75 to the orthoferrite-type orthorhombic system, and that of x=1.00 to the brownmillerite-type orthorhombic one. The mole ratios of $Fe^{4+}$ ion in the solid solutions or ${\tau}$ values were determined by the Mohr's salt analysis and nonstoichiometric chemical formulas of the system were formulated from x, ${\tau}$, and y values. From the result of the Mossbauer spectroscopy, the coordination and magnetic property of the iron ion are discussed. The electrical conductivities are measured as a function of temperature. The activation energy is minimum at the composition of x=0.25. The conduction mechanism can be explained by the hopping of electrons between the mixed valences of $Fe^{3+}\;and\;Fe^{4+}$ ions.