• 제목/요약/키워드: ortho-cleavage

검색결과 29건 처리시간 0.025초

페놀분해 효모 Candida tropicalis PW-51의 분리 및 분해특성

  • 김성빈;김치경;김희식;이창호;신기선;권기석;윤병대;오희목
    • 한국미생물·생명공학회지
    • /
    • 제24권6호
    • /
    • pp.743-748
    • /
    • 1996
  • For the biological treatment of phenolic resin wastewater containing phenol and formaldehyde, a phenol-degrading yeast was isolated from the papermill sludge, and then identified as Candida tropicalis PW-51 according to morphological, physiological and biochemical properties. The strain was able to degrade high phenol concentrations up to 2,000mg/l within 58 hours in batch cultures. Phenol-degrading efficiency by the strain was maximum at the culture conditions of a final concentration of 9 $\times$ 10$^{6}$ cells/ml, 30$\circ$C and pH 7.0. The mean degradation rate of phenol was highest at 45.5mg/l/h in 1,000mg/l phenol from 500mg/l to 2,000mg/l phenol. Because the enzyme activity of catechol 1,2-dioxygenase increased in the course of degradation of phenol, it seems that this strain degrades phenol via the ortho-cleavage of benzene ring. The isolate C. tropicalis PW-51 could be effectively used for the biological treatment of phenolic resin wastewater.

  • PDF

Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in Pseudomonas putida ND6

  • Shi, Sanyuan;Yang, Liu;Yang, Chen;Li, Shanshan;Zhao, Hong;Ren, Lu;Wang, Xiaokang;Lu, Fuping;Li, Ying;Zhao, Huabing
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.259-271
    • /
    • 2021
  • Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.

Dichlorophenol의 혐기성 분해에 관한 연구 (A study on Anaerobic Biodegradation of Dichlorophenol)

  • 박주석;전연호
    • 상하수도학회지
    • /
    • 제9권2호
    • /
    • pp.127-135
    • /
    • 1995
  • The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.

  • PDF

Metabolism of Dimethylphthalate by Aspergillus niger

  • Pradeepkmar;Sharanagouda;Karegoudar, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.518-521
    • /
    • 2000
  • Aspergillus niger is capable of metabolizing dimethyphthalate. The maximum weight of mycelium wa observed afterabout 6-8 dys of incubation. A TLC analysis revealed the accumulation of metabolites in the resting cell culture. Monomethylphthalate, phthalate, and protocatechuate were shown to be the intermediates by thin layer chromatographic and spectrophotometric analyses. The fungus metabolized dimethylphthalate through monomethylphthalate, phthalate, and protocatechuate as evidenced by the oxygen uptake and an enzymatic analysis. The terminal aromatic metabolite, protocatechuate, is metabolized via the ortho-cleavage pathway.

  • PDF

Alcaligenes eutrophus 균주의 성장과 Poly-Beta-hydroxybutyrate 합성에 미치는 포도당과 암모늄농도의 영향

  • 이용우;유영제
    • 한국미생물·생명공학회지
    • /
    • 제18권6호
    • /
    • pp.607-612
    • /
    • 1990
  • 생분해성 고분자로서 중요한 poly-$\beta$-hydroxybutyrate(PHB)의 생합성에 있어서 포도당과 암모늄농도의 영향을 규명하기 위하여 Alcaligenes eutrophus를 회분식으로 배양하였다. PHB는 질소원이 고갈되면서 생성되었고 건조세포무게의 약 80까지 축적되었다. 초기 포도당농도가 높을수록 세포성장과 PHB 합성은 억제되었지만 최종 세포농도와 건조세포무게에 대한 PHB 축적비는 증가하였다. 초기 암모늄농도가 낮을수록 최종 세포와 PHB 농도가 낮았지만 건조세포무게에 대한 PHB 축적비는 증가하였다. 배양도중 산소공급을 중단했을 때 세포성장과 PHB 합성이 중단되었다.

  • PDF

Stenotrophomonas maltophilia에 의한 방향족 화합물의 분해특성 (Characteristics of Polycyclic Aromatic Hydrocarbons Degradation by Stenotrophomonas maltophilia)

  • 최창석;이태진;박진희;김영식;김진우
    • 유기물자원화
    • /
    • 제11권4호
    • /
    • pp.130-137
    • /
    • 2003
  • 본 연구에서는 페놀에 적응된 미생물을 순수 분리하여 다고리 방향족 탄화수소(PAH)분해에 이용 하고자 하였으며, PAH분해하는 과정에서 나타나는 특성을 파악하고자 하였다. 분리된 미생물은 Stenotrophomonas maltophilia로 동정되었으며, 페놀의 분해경향은 낮은 농도에서 빠른 분해속도 상수값을 가지며, 미생물의 성장률은 0.1447mg cell/mg phenol로 나타났다. 나프탈렌과 페놀의 공존 시 페놀의 분해를 선호하고, 나프탈렌 및 페난스렌을 성장기질로 이용하는 특성을 가지고 있으나, 파이렌과 같이 4개 이상의 고리구조를 가진 PAH의 분해는 이루어지지 않았다. PAH 분해경로는 dioxygenation에 의한 두개의 hydroxy group이 C-1과 C-2에 첨가된 상태에서 ortho cleavage가 일어나고 순차적으로 Decarboxylation이 일어나는 것으로 판단되었다.

  • PDF

파라치온 분해 세균 Pseudomonas rhodesiae H5의 특성 (Characteristics of the Parathion Degrading Pseudomonas rhodesiae H5.)

  • 윤남경;박경량
    • 생명과학회지
    • /
    • 제14권4호
    • /
    • pp.582-588
    • /
    • 2004
  • 대전 근교의 농약으로 오염된 토양으로부터 파라치온을 분해하는 81균주를 분리한 후, 분리균주들중 파라치온 이용능이 가장 우수한 한 균주를 최종선별하였다. 최종 선별된 균은 생리생화학적 조사와 16S rRNA 염기 서열분석 등을 통하여 Pseudomonas rhodesiae H5로 확인되었다. Pseudomonas rhodesiae H5는 다양한 당을 이용하였으나 sorbose는 이용하지 못하였다. 또 이 균주는 ampicillin, spectinomycin, mito-mycin C에는 일부 저항성을 가지나 kanamycin, chloram-phenicol에는 저항성을 나타내지 않았다. 그리고 $BaCl_2$, LiCl, $MnSO_4$등의 중금속에서는 mg/ml 단위까지 강한 내성을 나타냈다. Pseudomonas rhodesiae H5의 최적 생장 조건은 3$0^{\circ}C$, pH 7.0 이었고, 이 균주는 파라치온의 organophosphate bond를 가수분해하여 p-nitrophenol를 생성한 후 ortho-ring cleavage를 거쳐 중심대사에 연결되는 것으로 추정된다.

Product-Resolved Photodissociations of Iodotoluene Radical Cations

  • Shin, Seung-Koo;Kim, Byung-Joo;Jarek, Russell L.;Han, Seung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.267-270
    • /
    • 2002
  • Photodissociations of o-, m-, and p-iodotoluene radical cations were investigated by using Fourier-transform ion cyclotron resonance (FT-ICR) spectrometry. Iodotoluene radical cations were prepared in an ICR cell by a photoionization charge-transfer method. The time-resolved one-photon dissociation spectra were obtained at 532 nm and the identities of $C_7H_7^+$ products were determined by examining their bimolecular reactivities toward toluene-$d_8$. The two-photon dissociation spectra were also recorded in the wavelength range 615-670 nm. The laser power dependence, the temporal variation, and the identities of $C_7H_7^+$ were examined at 640 nm. The mechanism of unimolecular dissociation of iodotoluene radical cations is elucidated: the lowest barrier rearrangement channel leads exclusively to the formation of the benzyl cation, whereas the direct C-I cleavage channel yields the tolyl cations that rearrange to both benzyl and tropylium cations with dissimilar branching ratios among o-, m-, and p-isomers. With a two-photon energy of 3.87 eV at 640 nm, the direct C-I cleavage channel results in the product branching ratio, [tropylium cation]/[benzyl cation], in descending order, 0.16 for meta >0.09 for ortho >0.05 for para.

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

Microbial Degradation of Monohydroxybenzoic Acids

  • Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.53-61
    • /
    • 2000
  • Hydroxybenzoic acids are the most important intermediates in the degradative pathways of various aromatic compounds. Microorganisms catabolize aromatic compounds by converting them to hydroxylated intermediates and then cleave the benzene nucleus with ring dioxygenases. Hydroxylation of the benzene nucleus of an aromatic compound is an essential step for the initiation and subsequent disintegration of the benzene ring. The incorporation of two hydroxyl groups is essential for the labilization of the benzene nucleus. Monohydroxybenzoic acids such as 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydrosybenzoic acid, opr pyrocattechuic acid that are susceptible for subsequent oxygenative cleavage of the benzene ring. These terminal aromatic intermediates are further degraded to cellular components through ortho-and/or meta-cleavage pathways and finally lead to the formation of constituents of the TCA cycle. Many groups of microorganisms have been isolated as degraders of hydroxybenzoic acids with diverse drgradative routes and specific enzymes involved in their metabolic pahtway. Various microorganisms carry out unusual non-oxidative decarboxylation of aromatic acids and convert them to respective phenols which have been documented. Futher, Pseudomonas and Bacillus spp. are the most ubiquitous microorganisms, being the principal components of microflora of most soil and water enviroments.

  • PDF