• Title/Summary/Keyword: orographic precipitation

Search Result 27, Processing Time 0.032 seconds

A Numerical Case Study Examining the Orographic Effect of the Northern Mountain Complex on Snowfall Distribution over the Yeongdong Region (북한 지역의 산맥군이 영동 지역의 겨울철 강설 분포에 미치는 영향에 관한 수치 연구)

  • Lee, Jae Gyoo;Kim, Yu Jin
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.345-370
    • /
    • 2009
  • Numerical experiments using the Weather Research and Forecasting (WRF) model were done to identify the role of the mountain ranges in the northern part of the Peninsula (referred as "the northern mountain complex"), in the occurrence of two heavy snowfall events over the Yeongdong region on 7-8 December 2002 and 20-21 January 2008. To this end, control simulations with the topography of the northern mountain complex and other simulations without the topography of the mountain complex were performed. It was revealed that the amount of snowfall over the Yeongdong region from the control simulation much more exceeded that of the simulation without the topography of the mountain complex. This increase of the snowfall amount over the Yeongdong region can be explained as follows: As the upstream flow approached the northern mountain complex, it deflected around the northern mountain complex due to the blocking effect of the mountains with a low Froude number less than ~0.16. This lead to the strengthening of northeasterly over the East Sea and over the Yeongdong region. The strong northeasterly is accompanied with much more snowfall over the Yeongdong region by intensifying air-mass modification over the sea and the orographic effect of the Taeback mountains. Thus, it was concluded that the topography of the northern mountain complex is one of the main factors in determining the distribution and amount of precipitation in the Yeongdong region when there is an expansion of the Siberian High toward the East Sea.

Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario (RCP 8.5 기후변화 시나리오의 강수량 변화에 따른 미래 PMPs의 전망)

  • Lee, Okjeong;Park, Myungwoo;Lee, Jeonghoon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Since future climate scenarios indicate that extreme precipitation events will intensity, probable maximum precipitations (PMPs) without being taken climate change into account are very likely to be underestimated. In this study future PMPs in accordance with the variation of future rainfall are estimated. The hydro-meteorologic method is used to calculate PMPs. The orographic transposition factor is applied in place of the conventional terrain impact factor which has been used in previous PMPs estimation reports. Future DADs are indirectly obtained by using bias-correction and moving-averaged changing factor method based on daily precipitation projection under KMA RCM (HEDGEM3-RA) RCP 8.5 climate change scenario. As a result, future PMPs were found to increase and the spatially-averaged annual PMPs increase rate in 4-hour and $25km^2$ was projected to be 3 mm by 2045. In addition, the increased rate of future PMPs is growing increasingly in the future, but it is thought that the uncertainty of estimating PMPs caused by future precipitation projections is also increased in the distant future.

Characterization Of Rainrate Fields Using A Multi-Dimensional Precipitation Model

  • Yoo, Chul-sang;Kwon, Snag-woo
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.147-158
    • /
    • 2000
  • In this study, we characterized the seasonal variation of rainrate fields in the Han river basin using the WGR multi-dimensional precipitation model (Waymire, Gupta, and Rodriguez-Iturbe, 1984) by estimating and comparing the parameters derived for each month and for the plain area, the mountain area and overall basin, respectively. The first-and second-order statistics derived from observed point gauge data were used to estimate the model parameters based on the Davidon-Fletcher-Powell algorithm of optimization. As a result of the study, we can find that the higher rainfall amount during summer is mainly due to the arrival rate of rain bands, mean number of cells per cluster potential center, and raincell intensity. However, other parameters controlling the mean number of rain cells per cluster, the cellular birth rate, and the mean cell age are found invariant to the rainfall amounts. In the application to the downstream plain area and upstream mountain area of the Han river basin, we found that the number of storms in the mountain area was estimated a little higher than that in the plain area, but the cell intensity in the mountain area a little lower than that in the plain area. Thus, in the mountain area more frequent but less intense storms can be expected due to the orographic effect, but the total amount of rainfall in a given period seems to remain the same.

  • PDF

Some issues on the downscaling of global climate simulations to regional scales

  • Jang, Suhyung;Hwang, Manha;Hur, Youngteck;Kavvas, M. Levent
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.229-229
    • /
    • 2015
  • Downscaling is a fundamental procedure in the assessment of the future climate change impact at regional and watershed scales. Hence, it is important to investigate the spatial variability of the climate conditions that are constructed by various downscaling methods in order to assess whether each method can model the climate conditions at various spatial scales properly. This study introduces a fundamental research from Jang and Kavvas(2015) that precipitation variability from a popular statistical downscaling method (BCSD) and a dynamical downscaling method (MM5) that is based on the NCAR/NCEP reanalysis data for a historical period and on the CCSM3 GCM A1B emission scenario simulations for a projection period, is investigated by means of some spatial characteristics: a) the normalized standard deviation (NSD), and b) the precipitation change over Northern California region. From the results of this study it is found that the BCSD method has limitations in projecting future precipitation values since the BCSD-projected precipitation, being based on the interpolated change factors from GCM projected precipitation, does not consider the interactions between GCM outputs and local geomorphological characteristics such as orographic effects and land use/cover patterns. As such, it is not clear whether the popular BCSD method is suitable for the assessment of the impact of future climate change at regional, watershed and local scales as the future climate will evolve in time and space as a nonlinear system with land-atmosphere feedbacks. However, it is noted that in this study only the BCSD procedure for the statistical downscaling method has been investigated, and the results by other statistical downscaling methods might be different.

  • PDF

Changes in the Spatiotemporal Patterns of Precipitation Due to Climate Change (기후변화에 따른 강수량의 시공간적 발생 패턴의 변화 분석)

  • Kim, Dae-Jun;Kang, DaeGyoon;Park, Joo-Hyeon;Kim, Jin-Hee;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.424-433
    • /
    • 2021
  • Recent climate change has caused abnormal weather phenomena all over the world and a lot of damage in many fields of society. Particularly, a lot of recent damages were due to extreme precipitation, such as torrential downpour or drought. The objective of this study was to analyze the temporal and spatial changes in the precipitation pattern in South Korea. To achieve this objective, this study selected some of the precipitation indices suggested in previous studies to compare the temporal characteristics of precipitation induced by climate change. This study selected ten ASOS observatories of the Korea Meteorological Administration to understand the change over time for each location with considering regional distribution. This study also collected daily cumulative precipitation from 1951 to 2020 for each point. Additionally, this study generated high-resolution national daily precipitation distribution maps using an orographic precipitation model from 1981 to 2020 and analyzed them. Temporal analysis showed that although annual cumulative precipitation revealed an increasing trend from the past to the present. The number of precipitation days showed a decreasing trend at most observation points, but the number of torrential downpour days revealed an increasing trend. Spatially, the number of precipitation days and the number of torrential downpour days decreased in many areas over time, and this pattern was prominent in the central region. The precipitation pattern of South Korea can be summarized as the fewer precipitation days and larger daily precipitation over time.

Orographic Precipitation Analysis with GPD Model and Linear Regression (GPD 모형 및 선형회귀분석을 이용한 산악형 강수 해석)

  • Um, Myoung-Jin;Yun, Hye-Seon;Cho, Won-Cheol;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1053-1057
    • /
    • 2008
  • 본 연구에서는 산악형 강수 해석을 위해 제주도내 강우관측 자료를 이용하여 확률강우량 산정 및 고도와의 선형회귀분석을 수행하였다. 제주도내 강우관측 자료는 기상관서 4개소 및 AWS(Automatic Weather System, 자동기상관측소) 13개소의 자료를 활용하였다. 확률강우량 산정시 AWS 강우관측 자료는 AMS(Annual Maximum Series, 연 최대치 계열) 모형을 적용하기에는 자료기간이 충분하지 않으므로 짧은 자료기간에 적합한 PDS(Partial Duration Series, 부분 기간치 계열) 모형을 적용하였다. 따라서 본 연구에서는 PDS의 대표적인 분포형인 GPD(Generalized Pareto Distribution)를 적용하여 지속시간별 확률강우량을 산정하였다. 산정된 지속시간별 확률강우량과 고도와의 관계를 확인하기 위하여 선형회귀분석을 수행하였다. 회귀분석 결과 확률강우량은 고도가 증가함에 따라 선형적으로 증가하였다. 또한, 재현기간이 길어질수록 고도에 따른 확률강우량 증가율도 증가하였다. 다만, 재현기간과 관계없이 지속시간이 짧을 경우 확률강우량과 고도와의 선형 관계는 약해지는 것으로 나타났다.

  • PDF

Rainfall and Runoff Characteristics on a Deciduous Forest Watershed in Mt. Ungsek, Sancheong (산청 웅석봉군립공원 내 활엽수림유역의 강수와 유출특성)

  • Kim, Ki-Dae;Choi, Hyung-Tae;Lim, Hong-Geun;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • This study aimed to investigate orographic precipitation and green dam (water conservation function) characteristics in a deciduous forest watershed in the region of Mt. Ungseok, Sancheong, Gyeongnam, South Korea. The rainfall and runoff of the watershed were monitored for six years (2011~2016) at the weather station and at the weir of the watershed, respectively. During the study period, the rainfall in the watershed (mountainous area) was larger than that of the meteorological station (flat area) nearest to the watershed. Besides, compared to the normal year (1981~2010), the rainfall has increased and the seasonal distribution of rainfall of the mountainous area has changed. These changes might have been caused by climate change. The runoff ratio was highest in spring, followed by winter, summer and fall, whilst the runoff was highest in summer, followed by spring, fall and winter. This difference seems to be due to the melting of snow in dry spring and intensive rainfall in summer. The total runoff in the watershed was calculated as $10,143.8ton{\cdot}ha{\cdot}yr^{-1}$.

Estimation of moisture maximizing rate considering an orographic property : Typhoon Rusa case in Gangneung region (지형적 특성을 고려한 강릉지역 태풍 루사의 수분최대화비 산정)

  • Kim, Moon-Hyun;Lee, Hye-Ran;Im, Eun-Soon;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1483-1487
    • /
    • 2006
  • 본 연구에서는 2002년 태풍 루사(RUSA) 기간에 대한 강릉지역의 수분최대화비를 그 지역의 지형적인 특성을 고려하여 산정하였다. 수분최대화비는 최대가능강수(Probable Maximum Precipitation, 이하 PMP)를 추정하는데 가장 중요한 요소로써 최대 12시간 지속 1000 hPa 이슬점과 대표 12시간 지속 1000 hPa 이슬점에 따른 가강수량의 비로 계산된다. 각각의 이슬점을 결정하는 방법으로, 대표 12시간 지속 이슬점은 수분 유입지역을 파악함으로써 계산되는데, 이 유입지역은 지상일기도, 지표 풍향, 850 hPa 수분속, 유선장등을 고려하여 선정되었다. 또한 최대 12시간 지속 이슬점은 과거 42년간(1961년${\sim}$2002년)의 강릉지역 이슬점 온도 자료를 통해 방재연구소에서 제공하는 FARD2002 통계프로그램을 이용하여 구하였다. 이 프로그램에서 확률분포형으로는 Extreme TypeⅠ(Gumbel distribution)을 선정하였고 매개변수 추정방법으로 모멘트법을 사용하여 유의수준 10%에서 재현기간 50년 빈도 분석을 통해 이슬점 온도를 구하였다. 본 연구에서는 이와 같은 과정을 통해 재 추정된 수분최대화비와 기존에 제시된 호우전이비 및 DAD(Depth-Area-Duration) 분석결과를 이용하여 강릉호우의 소유역$(3.76km^2)$에 대한 PMP를 산정하고 기존 결과와의 차이점을 제시하였다.

  • PDF

The Characteristics of Heavy Rainfall in Summer over the Korean Peninsula from Precipitation Radar of TRMM Satellite : Case Study (TRMM/PR 관측에 의한 한반도에서의 여름철 호우의 특성 : 사례연구)

  • 박혜숙;정효상;노유정
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • The Tropical Rainfall Measuring Mission(TRMM) Satellite was launched in November 1997, carving into orbit the first space-borne Precipitation Radar(PR). The main objective of the TRMM is to obtain and study multi-year science data sets of tropical and subtropical rainfall measurements. In the present investigation, the characteristics of heavy rainfall cases over Korea in 1998 and 1999 are analyzed using the TRMM/PR dat3. We compare the rainrate measured from TRMM/PR with the accumulated rainfall data for 10 minutes tv Automatic Weather System(AWS). Especially, horizontal cross-section of rainrate with height and longitude in the precipitating clouds are investigated. As a result of the comparison with GMS-5 IR1, the TRMM/PR data delineate well the rain type( i.e. convective, stratiform cloud and others), height of storm top and instantaneous rainrate in the precipitating clouds. The vertical structure with height and horizontal cross-section of rainrate along the longitude show the orographic effect on the rainfall. TRMM/PR instrument measures the rainrate below 6 ㎜/hr more than AWS rainguages and inclined to underestimate the rainrate than rainguages for the whole area.

Water Balance of a Small Catchment in the Subalpine Grassland of Mt. Halla, Southern Korea (한라산 아고산 초지대 소유역의 물수지)

  • An Jung-Gi;Kim Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.404-417
    • /
    • 2006
  • In order to clarify some characteristics of hydrological cycle in the subalpine zone of Mt. Halla, water balance has been analysed using hydrological data of a first-order drainage basin around Mansedongsan and meterological data of Odeung AWS. The experimental basin extends from 1,595 m to 1,645 m in altitude and has an catchment area of 1.34 ha. It is largely underlain by trachybasalt and covered with sasa bamboo and sedges. Hydrological observations were carried out every 20 minutes from April 15 to September 19, 2004. The basin shows the total precipitation of 3,074 m that is 1.6 to 3 times of those in coastal and intermontane regions. Surface runoff amounts to 850 mm that is equivalent to 27.6% of the precipitation. By contrast, evapotranspiration only accounts for 14.2% of the precipitation, and the remnant of 1,790 m penetrates underground through a basement. The basin is located in the subalpine zone and then it has a high rainfall intensity as well as a large rainfall due to frequent orographic precipitation. But surface runoff usually dose not exceed 30% of the rainfall while Percolation demonstrates about 2 times of the runoff. Compared with granite or gneiss basins in Korea Peninsula, the experimental basin is characterized by a higher portion of percolation in water balance. And it is probably related to the highly permeable basaltic lavas in Jeju Island which are also overlain by porous volcanic soils.