• Title/Summary/Keyword: orientation control

Search Result 917, Processing Time 0.021 seconds

A Study on Conferring Orientation to Myoblast for Realizing Tissue of Cultured Meat (배양육 조직구현을 위한 배향성 부여에 관한 연구)

  • Seok, Yong-Joo;Zo, Sun-Mi;Choi, Soon-Mo;Han, Sung Soo
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.284-301
    • /
    • 2022
  • The limitations of food production caused by global warming, consumption of soil fertility, and land shortage have demanded the development of alternative foods. Their market has been increasing, and in particular, there is an urgent need for an alternative meat. Among them, the non-slaughtered cell-cultured meat that can be manufactured in the laboratory, that is, cultured meat, is in the spotlight, which can solve the problem of meat consumption while including the advantages of meat. It is classified into minced cultured meat and structured one with a structure similar to that of real meat. The latter is currently facing limitations related scaffolds, cells, and the multiplicative problems, and many attempts are being made to solve them. The complex problem is related to secure texture and taste as well as structural similarity to actual meat. To solve the problems, it is necessary to lay emphasis on cells, there are fat cells and vascular cells, and the most fundamental cells, muscle cells. These are the main cells that control the texture and nutrients of meat, and unlike other cells, they grow in the form of fibers. A myofibril (also known as a muscle fibril) is a basic rod-like organelle of a muscle cell, which is a quantitatively major component of meat, and one of the tissues that maintain the appearance of the body and bones. In this review article, we focused on the growth of muscle cells into long, tubular cells known as muscle fibers using the fabricated fibrous scaffold, and reviewed not only research results for muscle tissue engineering but also various results in the related fields for the last five years.

Protocatechuic acid impacts rotator cuff healing and reduces fatty degeneration in a chronic rotator cuff tear model in rats

  • Seo, Su-Jung;Park, Jae-Young;Park, Hyoung-Jin;Hwang, Jung-Taek
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.1
    • /
    • pp.5-14
    • /
    • 2022
  • Background: The purpose of this study was to verify the effect of protocatechuic acid (PCA) on tendon healing and fatty degeneration in a chronic rotator cuff model. Methods: Twenty-eight Sprague-Dawley male rats were randomly allocated into two groups: Saline+repair (SR) and PCA+repair (PR). The right shoulder was used for experimental interventions, and the left served as a control. PCA (30 mg/kg/day) was administered intraperitoneally at the site of infraspinatus tendon detachment in rats in the PR group, and the same volume of saline was administered to the same site in the SR group. The torn tendon was repaired 4 weeks after infraspinatus detachment. Four weeks after repair, hematoxylin and eosin (H&E), S100, and CD68 stains were performed to evaluate the degree of fatty degeneration and H&E and Masson trichrome stains were performed to assess tendon healing. Superoxide dismutase (SOD) was measured to test the efficacy of PCA as an antioxidant. Results: Results from histological evaluation indicated that SOD and CD68 levels at the musculotendinous region and collagen fiber parallel to the orientation at the tendon-to-bone junction were not significantly different between the SR and PR groups. The mean load-to-failure of the PR group (20.32±9.37 N) was higher than that of the SR group (16.44±6.90 N), although this difference was not statistically significant (p=0.395). The SOD activity in the operative side infraspinatus muscle of the PR group was higher than that of the SR group, but the difference was not statistically significant (p=0.053). Conclusions: The use of PCA could improve tendon healing and decrease fatty degeneration after rotator cuff repair.

Electro-optical characteristic analysis of liquid crystal cell using UV-treated self assembled monolayer (UV 처리된 자기 조립 단분자막을 사용한 액정 셀의 전기광학특성 분석)

  • Chan-Woo Oh;Hong-Gyu Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we demonstrated the orientation characteristics of liquid crystals using UV-treated FSAM as alignment layer. Moreover we confirmed the FSAM properties before and after UV treatment on indium tin oxide (ITO) glass substrates using physicochemical analysis. The hydrophobic property of the FSAM surface is change to hydrophilic through UV treatment. After UV treatment the LC molecules also were uniformly and horizontally aligned on the FSAM surfaces and the pretilt angle was obviously changed 90° degrees to 0° degrees. EO characteristic of TN cell which was fabricated with UV-treated FSAM was faster response time compare to conventional PI layer. The FSAM before and after UV treatment has a superior application potential as the LC alignment layer for LCD, potentially replacing the conventional polyimide layer.

Development of Software Education Program using Self-driving (자율주행을 활용한 소프트웨어 교육프로그램 개발)

  • Hyo Sun Yoon;Min Kyu Jeong;Kyung Baek Kim
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.145-155
    • /
    • 2024
  • As the importance of software and artificial education is emphasized on the digital transformation era, various educational materials are being developed and distributed. To achieve the purpose of software education, various software education programs suitable for school settings need to be provided. In this paper, we developed a software education program using self-driving that can be applied to secondary school software education and applied it to secondary school students. The developed software education program is a physical computing program consisting of various motion control programs such as object detection, line tracing using various sensors, focusing on experience and practice. As a result of the survey, students' attitudes and career orientation toward software and artificial intelligence, and satisfaction with software education were over 90%, and satisfaction with the proposed program was over 95%.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

Ten technical aspects of baseplate fixation in reverse total shoulder arthroplasty for patients without glenoid bone loss: a systematic review

  • Reinier W.A. Spek;Lotje A. Hoogervorst;Rob C. Brink;Jan W. Schoones;Derek F.P. van Deurzen;Michel P.J. van den Bekerom
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.88-107
    • /
    • 2024
  • The aim of this systematic review was to collect evidence on the following 10 technical aspects of glenoid baseplate fixation in reverse total shoulder arthroplasty (rTSA): screw insertion angles; screw orientation; screw quantity; screw length; screw type; baseplate tilt; baseplate position; baseplate version and rotation; baseplate design; and anatomical safe zones. Five literature libraries were searched for eligible clinical, cadaver, biomechanical, virtual planning, and finite element analysis studies. Studies including patients >16 years old in which at least one of the ten abovementioned technical aspects was assessed were suitable for analysis. We excluded studies of patients with: glenoid bone loss; bony increased offset-reversed shoulder arthroplasty; rTSA with bone grafts; and augmented baseplates. Quality assessment was performed for each included study. Sixty-two studies were included, of which 41 were experimental studies (13 cadaver, 10 virtual planning, 11 biomechanical, and 7 finite element studies) and 21 were clinical studies (12 retrospective cohorts and 9 case-control studies). Overall, the quality of included studies was moderate or high. The majority of studies agreed upon the use of a divergent screw fixation pattern, fixation with four screws (to reduce micromotions), and inferior positioning in neutral or anteversion. A general consensus was not reached on the other technical aspects. Most surgical aspects of baseplate fixation can be decided without affecting fixation strength. There is not a single strategy that provides the best outcome. Therefore, guidelines should cover multiple surgical options that can achieve adequate baseplate fixation.

Efficient Opaque Ice Sphere Formation Using a Lightweight Geometric Approach

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.91-98
    • /
    • 2024
  • In this paper, we present a particle-grid blending framework based on a geometric approach to efficiently represent opaque ice spheres with air bubbles. The water temperature is diffused through the grid and the air bubbles represented inside the ice through the particles. To solve the problem of previous methods that generate noisy dissolved air fields, we use levelsets to lighten the algorithm, i.e., the number of active particles and the initial amount of dissolved oxygen can be used to efficiently control the termination conditions of heat diffusion. We also extend the previous dissolved air field method, which only computes near air bubbles, to transparent regions to represent realistic ice spheres, and introduce a levelset-based approach to accurately compute the orientation of particles. As a result, the method presented in this paper is about three times faster than the existing methods and shows visually improved visualization of opaque ice spheres, which can be used in the field of representing physical virtual ice forms.

Comparing State Representation Techniques for Reinforcement Learning in Autonomous Driving (자율주행 차량 시뮬레이션에서의 강화학습을 위한 상태표현 성능 비교)

  • Jihwan Ahn;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.109-123
    • /
    • 2024
  • Research into vision-based end-to-end autonomous driving systems utilizing deep learning and reinforcement learning has been steadily increasing. These systems typically encode continuous and high-dimensional vehicle states, such as location, velocity, orientation, and sensor data, into latent features, which are then decoded into a vehicular control policy. The complexity of urban driving environments necessitates the use of state representation learning through networks like Variational Autoencoders (VAEs) or Convolutional Neural Networks (CNNs). This paper analyzes the impact of different image state encoding methods on reinforcement learning performance in autonomous driving. Experiments were conducted in the CARLA simulator using RGB images and semantically segmented images captured by the vehicle's front camera. These images were encoded using VAE and Vision Transformer (ViT) networks. The study examines how these networks influence the agents' learning outcomes and experimentally demonstrates the role of each state representation technique in enhancing the learning efficiency and decision- making capabilities of autonomous driving systems.

Oxide perovskite crystals type ABCO4:application and growth

  • Pajaczkowska, A.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.258-292
    • /
    • 1996
  • In the last year great interest appears to YBCO thin films preparation on different substrate materials. Preparation of epitaxial film is a very difficult problem. There are many requirements to substrate materials that must be fullfilled. Main problems are lattice mismatch (misfit) and similarity of structure. From paper [1] or follows that difference in interatomic distances and angles of substrate and film is mire important problem than similarity of structure. In this work we present interatomic distances and angle relations between substrate materials belonging to ABCO4 group (where A-Sr or Ca, B-rare earth element, C-Al or Ga) of different orientations and YBCO thin films. There are many materials used as substrates for HTsC thin films. ABCO4 group of compounds is characterized by small dielectric constants (it is necessary for microwave applications of HTsC films), absence of twins and small misfit [2]. There most interesting compounds CaNdAlO4, SrLaAlO4 and SrLaGaO4 were investigated. All these compounds are of pseudo-perovskite structure with space group 14/mmm. This structure is very similar to structure of YBCO. SLG substrate has the lowest misfit (0.3%) and dielectric constant. For preparation of then films of substrates of this group of compound plane of <100> orientation are mainly used. Good quality films of <001> orientations are obtained [3]. In this case not only a-a misfit play role, but c-3b misfit is very important too. Sometimes, for preparation of thin films substrates of <001> and <110> orientations were manufactured [3]. Different misfits for different YBCO faces have been analyzed. It has been found that the mismatching factor for (100) face is very similar to that for (001) face so there is possibility of preparation of thin films on both orientations. SrLaAlO4(SLA) and SrLaGaO4(SLG) crystals of general formula ABCO4 have been grown by the Czochralski method. The quality of SLA and SLG crystals strongly depends on axial gradient of temperature and growth and rotation rates. High quality crystals were obtained at axial gradient of temperature near crystal-melt interface lower than 50℃/cm, growth rate 1-3 mm/h and the rotation rate changing from 10-20pm[4]. Strong anisotropy in morphology of SLA and SLG single crystals grown by the Czochralski method is clearly visible. On the basics of our considerations for ABCO4 type of the tetragonal crystals there can appear {001}, {101}, and {110} faces for ionic type model [5]. Morphology of these crystals depend on ionic-covalent character of bonding and crystal growth parameters. Point defects are observed in crystals and they are reflected in color changes (colorless, yellow, green). Point defects are detected in directions perpendicular to oxide planes and are connected with instability of oxygen position in lattice. To investigate facets formations crystals were doped with Cr3+, Er3+, Pr3+, Ba2+. Chromium greater size ion which is substituted for Al3+ clearly induces faceting. There appear easy {110} faces and SLA crystals crack even then the amount of Cr is below 0.3at.% SLG single crystals are not so sensitive to the content of chromium ions. It was also found that if {110} face appears at the beginning of growth process the crystal changes its color on the plane {110} but it happens only on the shoulder part. The projection of {110} face has a great amount of oxygen positions which can be easy defected. Pure and doped SLA and SLG crystals measured by EPR in the<110> direction show more intensive lines than in other directions which allows to suggest that the amount of oxygen defects on the {110} plane is higher. In order to find the origin of colors and their relation with the crystal stability, a set of SLA and SLG crystals were investigated using optical spectroscopy. The colored samples exhibit an absorption band stretching from the UV absorption edge of the crystal, from about 240 nm to about 550 m. In the case of colorless sample, the absorption spectrum consists of a relatively weak band in the UV region. The spectral position and intensities of absorption bands of SLA are typical for imperfection similar to color centers which may be created in most of oxide crystals by UV and X-radiation. It is pointed out that crystal growth process of polycomponent oxide crystals by Czochralski method depends on the preparation of melt and its stoichiometry, orientation of seed, gradient of temperature at crystal-melt interface, parameters of growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth. Growth parameters have an influence on the morphology of crystal-melt interface, type and concentration of defects.

  • PDF

The Effects of Horizontal Eye Movement on Mental Health Indices and Psychophysiological Activities in Healthy Subjects

  • Choi, Kyung-Mook;Min, Jung-Ah;Park, Gewn-Hi;Lee, Seung-Hwan;Chae, Jeong-Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.3
    • /
    • pp.148-158
    • /
    • 2011
  • Objectives The eye movement (EM) has been reported to play a role in enhancing the retrieval of episodic memories and reducing effects of fearful episodes in the past and worries for the futures. However, it is still unclear in the mechanism of EM in normal subjects. We examined the horizontal eye movement (HEM) effect using an aiding apparatus on mental health indices including negative and positive psychological factors, and psychophysiological measures such as heart rate variability and quantitative electroencepaholography (qEEG) in healthy subjects. Methods Twenty eight healthy subjects were recruited and randomly allocated into two groups : active HEM group and control group. The active HEM group conducted the HEM training with usual stress management audio-intervention using the apparatus inducing eye movement once a day for 14 days. The control group also conducted the same training once a day for 14 days, however, the saccadic eye movement was not included in this training. Psychological measurements, neurocognitive function tests, heart rate variability measurement and qEEG were conducted before and after the training in both groups. Results In the active HEM group, sleep status using Sleep Quality Scale (SQS) positive factors significantly increased after the training. By contrast, scores on the negative items of Psychological Well-Being Scale (PWBS), and negative items of the Life Orientation Test-Revised (LOT-R) were significantly decreased after the training. The percentage of delta amplitude (1-3 Hz) in qEEG significantly decreased after the HEM training. The percentage of alpha amplitude (8-12 Hz) significantly increased after HEM training. The change of delta amplitude in the active HEM group was positively correlated with the change of sleep satisfaction of Visual Analogue Scale (VAS), and the change of alpha amplitude was negatively correlated with depression of VAS, anxiety of VAS and Beck Anxiety Inventory (BAI). Conclusions The HEM training improved sleep quality and well-being, and sense of optimism. The HEM training also increased alpha amplitude and decreased delta amplitude in qEEG. The qEEG changes were well correlated with subjective improvement of mental health indices in healthy subjects. These results suggest some evidences that HEM training using the apparatus that induces EM would be helpful in improving subjective mental health in healthy subjects. Further study with larger samples size would be needed.