• Title/Summary/Keyword: organophosphorus

Search Result 223, Processing Time 0.026 seconds

Simultaneous Analysis of Multi-residual pesticides using GC/NPD (GC/NPD를 이용한 다성분 잔류농약의 동시분석)

  • 김우성;이선화;김상엽;정동윤;김재이;이영자;이홍재;정성욱;박흥재
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1117-1120
    • /
    • 2003
  • Pesticides were extracted from samples with 70% acetone and methylene chloride in order, and then cleaned up via open-column chromatography apparatus packed with florisil, and finally analyzed simultaneously the organophosphorus pesticides using GC/NPD. Ultra-2 and Ultra-1 fused silica capillary columns were used to separate and identify the products. Recovery of most analytes from soybean sample, taken from pesticide residues well, was greater than(80%) for all except(6) analytes. This method can simultaneously determine multiple pesticides with a high degree of accuracy and precision.

Electron Impact Fragmentations of Chlorinated Organophosphorus Pesticides

  • Hong, Jong Gi;Kim, Do Gyun;Paeng, Gi Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.785-792
    • /
    • 2000
  • Mass spectral fragmentations of six chlorinated organophosphorus pesticides were investigated using electron impact mass spectrometry. Understanding the fragmentation pathways, based on the fragment ions of mass spectra, should be useful in the structural elucidation and chemical identification of these compounds. The pro-posed fragmentation pathways were verified by collision-induced dissociation B/E-linked scan spectra. ln most cases,the structures of characteristic fragment ions could be expected by the observation of the peak clusters due to 35Cl and 37Cl isotopes. According to substituted groups on phosphorus atom, phosphate and phospho-rothioate exhibited significantIy differentfragmentation patterns. Especially, phosphate and phosphorothioate with diethyl ester produced more diverse fragment ions than that with dimethyl ester.

Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water (Part II : The signal analysis and simulation) (오염수 내의 유기인 화합물의 측정을 위한 광섬유 바이오센서 (제 2 부 : 신호분석 및 수치모사))

  • Choi, Jeong-Woo;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.16-23
    • /
    • 1994
  • Developed fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water needs the analysis of an enzyme kinetics and the transport phenomena in the reaction part to analyze the sensor signal and to design the sensor. The enzyme inhibition kinetics was investigated and the reactor model was proposed to design the reaction part in the proposed sensor. Since the acetylcholinesterase was inhibited by the organophosphorus compounds, experiments for enzyme inhibition reaction were performed from 0 to 2 ppm to be detected by the developed sensor, and irreversible enzyme inhibition kinetics was proposed. The reactor parts were divided into the two phases, i.e. bulk phase and immobilized enzyme layer, to analyze the flow and diffusion. Sensor signal was able to be analyzed based on the total reactor model established by linking the enzyme reaction kinetics. Based on the proposed model, the effects of loading enzyme amount and enzyme layer thickness on the magnitude of readout signal were simulated.

  • PDF

Different Clinical Outcomes by Subgroups in Organophosphorus Poisoning (유기인계 농약 중독 환자에서 약물의 종류에 따른 임상 양상 및 예후의 차이)

  • Lee, Duk-Hee;Jung, Jin-Hee;Jung, Koo-Young;Eo, Eun-Kyung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Purpose: Organophosphorus insecticides tend to be regarded as a homogeneous single entity. We aimed to determine whether organophosphate poisoning differs by subgroups in clinical features and severity. Methods: We retrospectively reviewed medical records of all patients with acute organophophorus poisoning from January 1998 to December 2006. We investigated clinical features, Glasgow coma scale (GCS), laboratory findings, QTc intervals, management, and outcomes. Results: A total of 109 patients were included. The dimethoxy group experienced significantly longer times than the diethoxy group for ventilation duration (0.6 day vs. 0.2 day, p=0.006), ICU duration (2.0 day vs. 0.8 day, p=0.037), and total admission duration (2.8 day vs. 0.9 day, p=0.008), except in cases of dichlorvos poisoning. Also, the GCS of the dimethoxy group (except with dichlorvos) was significantly lower than for the diethoxy group (dimethoxy, $11.2{\pm}5.2$ vs. diethoxy, $13.8{\pm}2.4$, p= 0.021). QTc intervals for the dimethoxy group (except with dichlorvos) tended to be somewhat greater than for the diethoxy group (dimethoxy, $452.9{\pm}16.1\;msec$ vs. diethoxy, $429.6{\pm}40.9\;msec$). There were 65 patients with dichlorvos ingestion, and 2 of these patients (3%) died. Conclusion: When compared to the diethoxy group, the dimethoxy group of organophosphates (with the exception of dichlorvos) were associated with poorer prognostic value for indicators such as GCS, QTc interval, requirement for intubation, ICU duration, and total admission duration. Within the dimethoxy group, patients with dichlorvos poisoning had relatively better prognoses than for the other dimethoxy group organophosphates studied.

  • PDF

Enhancement of Paraoxon Biodegradation Rate from Recombinant Escherichia coli Catalyst for Bioremediation (Bioremediation을 위하여 재조합 대장균 촉매를 이용한 Paraoxon의 생분해 속도 향상)

  • Choi, Suk Soon;Seo, Sang Hwan;Kang, Dong Gyun;Cha, Hyung Joon;Yeom, Sung Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.110-116
    • /
    • 2006
  • In this study, the biodegradation rate of paraoxon, that is an organophosphate pesticide, was enhanced by recombinant Escherichia coli harboring organophosphorus hydrolase (OPH). The optimum conditions were 8.5 of initial pH and 5.0% of acetone for the enhancement of specific whole cell OPH activity. When the OPH was produced to 498 Unit/L, 98% of 275mg/L paraoxon was degraded within 10 minutes, and thus the biodegradation rate was enhanced to $29.2mg/g{\cdot}min$. The results implied that practical bioremediation technology developed in this study was an effective method to degrade residual organophosphate pesticide in ground water or soils in a short time.

  • PDF

Phytoremediation of Organophosphorus and Organochlorine Pesticides by Acorus gramineus

  • Chuluun, Buyan;Iamchaturapatr, Janjit;Rhee, Jae-Seong
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.226-236
    • /
    • 2009
  • The performance of phytoremediation has proven effective in the removal of nutrients and metals from aqueous systems. However, little information is available regarding the behavior of pesticides and their removal pathways in aquatic environments involving plant-uptake. A detailed understanding of the kinetics of pesticide removal by plants and information on compound/plant partition coefficients can lead to an effective design of the phytoremediation process for anthropogenic pesticide reduction. It was determined that the reduction rates of four organophosphorus (OP) and two organochlorine (OC) pesticides (diazinon, fenitrothion, malathion, parathion, dieldrin, hexachlorobenzene [HCB]) could be simulated by first-order reaction kinetics. The magnitude of k was dependent on the pesticide species and found within the range of 0.409 - 0.580 $d^{-1}$. Analytical results obtained by mass balances suggested that differential chemical stability, including diversity of molecular structure, half-lives, and water solubility, would greatly influence the removal mechanisms and pathways of OPs and OCs in a phytoreactor (PR). In the case of OP pesticides, plant accumulation was an important pathway for the removal of fenitrothion and parathion from water, while pesticide sorption in suspended matter (SM) was an important pathway for removal of dieldrin and HCB. The magnitude of the pesticide migration factor (${\Large M}_p^{pesticide}$) is a good indication of determining the tendency of pesticide movement from below- to above-ground biomass. The uncertainties related to the different phenomena involved in the laboratory phyto-experiment are also discussed.

Studies on the Cholinesterase Inhibition and Toxicity of Various Organophosphorus Insecticides to the Hibernating Rice Stem Borer Larvae, Chilo suppressalis WALKER (이화명충에 대한 유기인살충제의 Cholinesterase 저해작용 및 살충력에 관하여)

  • Chang Chang Hyo;Saito Tetso;Iyatomi Kisabu
    • Korean journal of applied entomology
    • /
    • v.10 no.1
    • /
    • pp.13-22
    • /
    • 1971
  • This experiment was conducted to investigate the differences of the in vitro inhibitory effect of various organephobphorua insecticides on the chlinesterase from rice stem borer and those of the toxicity of them against the insect, with special references to the relationship between the cholinesterase inhibition and the toxicity. The results obtained were summarized as follows: Phosphate compounds shelved stronger inhibitory effect on the cholinesterase than thhiophosphate compounds, but was not stronger in toxicity than the latter. Diethoxy compounds were not always stronger than dimethoxy in cholinesterase inhibition and the toxicity of organophosphorus insecticides. The organophosphorus insecticides that inhibited strongly the cholinesterase were not always stronger in the toxicity.

  • PDF

Estimation of the Dietary Intake of Organophosphorus Pesticides by the Korean Population in 1986-1990 (한국인에 의한 유기인계 농약의 식이섭취량 추정)

  • Lee, Su-Rae;Lee, Mi-Gyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.1
    • /
    • pp.66-75
    • /
    • 1994
  • Daily dietary intake of 11 organophosphorus pesticides by the Korean population was estimated to be $31{\mu}g$ per person ($0.567{\mu}g$/kg body weight/day) from known residue data on raw agricultural products and food factor based on the Korean diet, for the period of 1986-90. Intake ratio of 11 pesticides by food group was 56% from cereals, 23% from vegetables, 14% from fruits and 7% from legumes and other food materials. The ratio of the dietary intake to the ADI was 6.1% in diazinon, 5.8% in fenthion, 3.3% in fenitrothion, 1.5% in EPN and 1.7% average for 11 individual pesticides whereas the cumulative ratio of 11 pesticides was 18.7%. It is, therefore, proposed that a systematic estimate for the dietary intake of organophosphorus pesticides should be undertaken, although the present intake level would not give any adverse effect to the health of the Korean population under the current situation of pesticide usage.

  • PDF

Recent Trend in Bioscavengers for Inactivation of Toxic Organophosphorus Compounds (유기인 계열 독성물질 분해를 위한 바이오스캐빈저 최신 연구 동향)

  • Kim, Heejeong;Jeong, Keunhong;Kye, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • In recent years, toxic organophosphorus compounds (OPs) have been used for civilians, becoming a great threat to the world. Alternative to the current treatment policy unpredictable for any prevention, researches on bioscavenger as an improved treatment have been actively conducted. Bioscavengers refer to proteins and enzymes that prevent intoxication by inactivating or binding toxic OPs before they reaches the target. In particular, extensive efforts have been made to develop catalytic bioscavengers that quickly detoxify OPs even with a small dose of the protein by performing multiple binding and hydrolysis processes with OPs. This review introduces the latest studies and results for developing catalytic bioscavengers using molecular evolution and protein engineering techniques. We will briefly present some of the remaining challenges on developing enzymes into clinically approved drugs.