• Title/Summary/Keyword: organizational

Search Result 7,031, Processing Time 0.032 seconds

The Policy Package Related to Essential Medical Service: The Key Is Elaboration and Solidification (필수의료 정책 패키지, 내실화가 관건이다)

  • Sun-Hee Lee
    • Health Policy and Management
    • /
    • v.34 no.1
    • /
    • pp.1-3
    • /
    • 2024
  • Currently, the issue of poor accessibility to essential medical services has been brought to light as a social discontent. In order to strengthen the essential medical service system, the government has announced the "the policy package related to essential medical service" as a comprehensive solution and has vowed to invest more than 10 trillion won by 2028. As it contains crucial elements for changing the framework of the healthcare system, I would like to present several points to consider in policy implementation. Given that this package contains important elements for changing the framework of the healthcare system, there are a few issues to consider in policy implementation. First, a mechanism to prevent politicization should be established when designing the physician training system. Second, changing from a hospital centered on residents to one centered on specialists means that the society bears the cost of training residents, while paying a high price for specialist services. The willingness of society to pay for the costs incurred by such a change should be carefully considered, and an appropriate budget must be prepared. Third, as the operation of shared human resources and inter-organizational networking, among other detailed policy measures, are still at a level of conceptual discussion, various issues should be solidly reviewed and considered for in the mid to long term to suit the conditions of the domestic healthcare system.

A Study on the Financial Performance for Nonprofit Performing Arts Organizations: Focusing on American Symphony Orchestras (비영리 공연조직의 재정성과에 관한 연구 - 미국오케스트라를 중심으로 -)

  • Park, Sunmi;Choi, Young-Jun
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.33-63
    • /
    • 2019
  • This study examines financial performance of nonprofit performing arts organizations to provide concrete suggestions and improve their financial performance so that they can build strategies to continue organizational activities. This study investigates empirical data of IRS 990 tax form of top 73 US orchestras and analyzed GLS pannel. Dependent variables are measured as contributions and ticket sales, and independent variables are measured as economic environment, cultural capital, orchestra characters, government grants, and social capital. Based on the finding from the research, determination of contribution outcomes is positively affected by state employment and orchestra's internal characteristics including age, size and conductor's US nationality, government grants, and volunteer. Ticket sales are affected by employment, education level, orchestra's resources, government grants, and volunteer. However, a size of cultural market negatively influences on financial outcomes and cultural capital doesn't influence on results. Interesting finding is a relationship between volunteers and organizations is vital of their fiscal achievement. This is significant in empirical analysis on nonprofit performing arts organizations from an economic view point, and will contribute on organizations to improve their strategic plan to sustain a business.

A Research on RC3(RMF-CMMC Common Compliance) meta-model development in preparation for Defense Cybersecurity (국방 사이버보안을 위한 RMF-CMMC 공통규정준수 메타모델 개발방안 연구)

  • Jae-yoon Hwang;Hyuk-jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • The U.S. Department of Defense, leading global cybersecurity policies, has two main cybersecurity frameworks: the Cybersecurity Maturity Model Certification (CMMC) for external defense industry certification, and the Risk Management Framework (RMF) for internal organizational security assessments. For Republic of Korea military, starting from 2026, the Korean version of RMF (K-RMF) will be fully implemented. Domestic defense industry companies participating in projects commissioned by the U.S. Department of Defense must obtain CMMC certification by October 2025. In this paper, a new standard compliance meta-model (R3C) development methodology that can simultaneously support CMMC and RMF security audit readiness tasks is introduced, along with the implementation results of a compliance solution based on the R3C meta-model. This research is based on practical experience with the U.S. Department of Defense's cybersecurity regulations gained during the joint project by the South Korean and U.S. defense ministries' joint chiefs of staff since 2022. The developed compliance solution functions are being utilized in joint South Korean-U.S. military exercises. The compliance solution developed through this research is expected to be available for sale in the private sector and is anticipated to be highly valuable for domestic defense industry companies that need immediate CMMC certification.

A Study on Success Factors of Successful Start-up by Step: Focus on ERIS Model (창업기업의 성장단계별 성공요인 연구: ERIS모델을 중심으로)

  • Ko Kyung Sun;Nam Jung Min
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.71-86
    • /
    • 2023
  • Although starting a business plays a key role in strengthening national competitiveness and creating jobs, it is recognized as a risky choice. Failure to start a business can result in a wide range of negative effects, such as loss of personal wealth as well as deterioration of national competitiveness. This study considers startups that have reached a level of sustainable growth by achieving performance above the minimum profitability and sales standards for KOSDAQ listing, or achieved EXIT through sale or listing, as successful startups. based on the practical experiences of 23 successful entrepreneurs and Based on perception, the importance and priorities of startup success factors were derived through stratification analysis (Analytic Hierarchy Process, AHP), and interviews were conducted. In particular, using the ERIS model, we comprehensively analyze various variables of a start-up by considering the four elements of the entrepreneur, resources, industry, and strategy, and examine the changes and importance of success factors according to the characteristics of each growth stage of the start-up. As a goal, we specifically identified the challenges and opportunities faced by entrepreneurs at each stage. As a result of the study, the order of importance of the top factors of success factors in the start-up period was found to be the entrepreneur, resources, industry, and strategy. In particular, the importance of the entrepreneur's entrepreneurship spirit, special capabilities, general capabilities, and human resources was emphasized. The order of importance of the top factors of success factors during the growth period was found in the following order: entrepreneur, resources, industry, and strategy. In particular, the importance of general capabilities, entrepreneurship, and human and organizational resources was emphasized. This study is significant in that it analyzes startup success factors from the perspective of successful entrepreneurs and provides useful insights and directions to entrepreneurs and policy makers.

  • PDF

Leveraging LLMs for Corporate Data Analysis: Employee Turnover Prediction with ChatGPT (대형 언어 모델을 활용한 기업데이터 분석: ChatGPT를 활용한 직원 이직 예측)

  • Sungmin Kim;Jee Yong Chung
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.19-47
    • /
    • 2024
  • Organizational ability to analyze and utilize data plays an important role in knowledge management and decision-making. This study aims to investigate the potential application of large language models in corporate data analysis. Focusing on the field of human resources, the research examines the data analysis capabilities of these models. Using the widely studied IBM HR dataset, the study reproduces machine learning-based employee turnover prediction analyses from previous research through ChatGPT and compares its predictive performance. Unlike past research methods that required advanced programming skills, ChatGPT-based machine learning data analysis, conducted through the analyst's natural language requests, offers the advantages of being much easier and faster. Moreover, its prediction accuracy was found to be competitive compared to previous studies. This suggests that large language models could serve as effective and practical alternatives in the field of corporate data analysis, which has traditionally demanded advanced programming capabilities. Furthermore, this approach is expected to contribute to the popularization of data analysis and the spread of data-driven decision-making (DDDM). The prompts used during the data analysis process and the program code generated by ChatGPT are also included in the appendix for verification, providing a foundation for future data analysis research using large language models.

A Study on the Characteristics of Learning Organizations in Public Libraries (공공도서관의 학습조직 특성 연구)

  • Hyunkyung Song
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.4
    • /
    • pp.335-358
    • /
    • 2023
  • This study analyzed the characteristics of the learning organization according to its characteristics, the operation method and size of each public library. In addition, the service quality of public libraries was investigated so that it was also analyzed the correlation between the characteristics of the learning organization and the quality of the service. To achieve the research objectives, 83 librarians and 343 users across seven public libraries in South Korea's metropolitan areas were surveyed. The investigation covered various dimensions of learning organizations: creating continuous learning opportunities, promoting inquiry and dialogue, encouraging collaboration and team learning, creating systems to capture and share learning, empowering people toward a collective vision, connecting the organization to its environment, and providing strategic leadership for learning. Also it was investigated aspects of service quality: affect of service, information control, and library as place. As a result of the study, for the learning organization characteristics, more than 3.4 out of 5 were qualified to have foundation of learning organizations. One attempted to categorize according to its operational method and size and compare learning organization differences between public libraries, however it was not easy to see the clear differences. Therefore it was judged that there might be another unidentified factor which gives an affect on learning organization. Furthermore, it was found that there was a positive correlation between learning organization traits and service quality. This study might signify by looking into how the learning organization, which is one of the post-bureaucratic organizational traits, appears in public libraries.

Survey of the Knowledge of Korean Radiology Residents on Medical Artificial Intelligence (의료 인공지능에 대한 대한민국 영상의학과 전공의의 인식 조사 연구)

  • Hyeonbin Lee;Seong Ho Park;Cherry Kim;Seungkwan Kim;Jaehyung Cha
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1397-1411
    • /
    • 2020
  • Purpose To survey the perception, knowledge, wishes, and expectations of Korean radiology residents regarding artificial intelligence (AI) in radiology. Materials and Methods From June 4th to 7th, 2019, questionnaires comprising 19 questions related to AI were distributed to 113 radiology residents. Results were analyzed based on factors such as the year of residency and location and number of beds of the hospital. Results A total of 101 (89.4%) residents filled out the questionnaire. Fifty (49.5%) respondents had studied AI harder than the average while 68 (67.3%) had a similar or higher understanding of AI than the average. In addition, the self-evaluation and knowledge level of AI were significantly higher for radiology residents at hospitals located in Seoul and Gyeonggi-do compared to radiology residents at hospitals located in other regions. Furthermore, the self-evaluation and knowledge level of AI were significantly lower in junior residents than in residents in the 4th year of training. Of the 101 respondents, only 16 (15.8%) had experiences in AI-related study while 91 (90%) were willing to participate in AI-related study in the future. Conclusion Organizational efforts through a radiology society would be needed to meet the need of radiology trainees for AI education and to promote the role of radiologists more adequately in the era of medical AI.

Survey on Value Elements Provided by Artificial Intelligence and Their Eligibility for Insurance Coverage With an Emphasis on Patient-Centered Outcomes

  • Hoyol Jhang;So Jin Park;Ah-Ram Sul;Hye Young Jang;Seong Ho Park
    • Korean Journal of Radiology
    • /
    • v.25 no.5
    • /
    • pp.414-425
    • /
    • 2024
  • Objective: This study aims to explore the opinions on the insurance coverage of artificial intelligence (AI), as categorized based on the distinct value elements offered by AI, with a specific focus on patient-centered outcomes (PCOs). PCOs are distinguished from traditional clinical outcomes and focus on patient-reported experiences and values such as quality of life, functionality, well-being, physical or emotional status, and convenience. Materials and Methods: We classified the value elements provided by AI into four dimensions: clinical outcomes, economic aspects, organizational aspects, and non-clinical PCOs. The survey comprised three sections: 1) experiences with PCOs in evaluating AI, 2) opinions on the coverage of AI by the National Health Insurance of the Republic of Korea when AI demonstrated benefits across the four value elements, and 3) respondent characteristics. The opinions regarding AI insurance coverage were assessed dichotomously and semi-quantitatively: non-approval (0) vs. approval (on a 1-10 weight scale, with 10 indicating the strongest approval). The survey was conducted from July 4 to 26, 2023, using a web-based method. Responses to PCOs and other value elements were compared. Results: Among 200 respondents, 44 (22%) were patients/patient representatives, 64 (32%) were industry/developers, 60 (30%) were medical practitioners/doctors, and 32 (16%) were government health personnel. The level of experience with PCOs regarding AI was low, with only 7% (14/200) having direct experience and 10% (20/200) having any experience (either direct or indirect). The approval rate for insurance coverage for PCOs was 74% (148/200), significantly lower than the corresponding rates for other value elements (82.5%-93.5%; P ≤ 0.034). The approval strength was significantly lower for PCOs, with a mean weight ± standard deviation of 5.1 ± 3.5, compared to other value elements (P ≤ 0.036). Conclusion: There is currently limited demand for insurance coverage for AI that demonstrates benefits in terms of non-clinical PCOs.

Stage of Service Switching Behavior based on the Transtheoretical Model: Focused on Accommodation Sharing Economy Service (범이론적 모형에 기반한 서비스 전환 행동 단계 연구: 숙박공유경제 서비스를 중심으로)

  • Byounggu Choi
    • Information Systems Review
    • /
    • v.19 no.4
    • /
    • pp.183-209
    • /
    • 2017
  • With changes in information technology (IT), many innovative IT-based services, such as AirBnB, have become popular. Switching behavior toward new and innovative services become a major issue for managers who want to attract many customers. In response, many researchers have investigated why customers switch service providers. However, little research has been conducted on the processes of switching behavior for a hedonic service. To fill this research gap, this study aimed to identify the stages of switching behavior based on transtheoretical model. Furthermore, the factors affecting the service switching behavior in stages were identified on the basis of service provider switching model. This study also hypothesized the customer's switching behavior in accommodation sharing economy service and analyzed it empirically. Results showed that the factors affecting switching behavior differ across five stages. The present results can provide a basis to prevent switching behavior and reduce churn by analyzing the difference in switching behavior among stages. This study also helps managers who want to improve organizational performance by enhancing customer retention capability.

The Effect of the Introduction Characteristics of Cloud Computing Services on the Performance Expectancy of Firms: Setting Up Innovativeness as the Moderator (클라우드 컴퓨팅 서비스의 도입특성이 기업의 인지된 기대성과에 미치는 영향: 기업의 혁신채택성향을 조절변수로)

  • Jae Su Lim;Jay In Oh
    • Information Systems Review
    • /
    • v.19 no.1
    • /
    • pp.75-100
    • /
    • 2017
  • Today, firms are constantly transforming and innovating to survive under the rapidly changing business environment. The introduction of cloud computing services has become popular throughout society as a whole and is expected to result in many changes and developments not only in firms and but also in the public sector subject to innovation. The purpose of this study is to investigate the effect of the characteristics of cloud computing services on the perceived expected performance according to innovativeness based on innovation diffusion theory. The results of the analysis of the data collected from this research are as follows. The convenience and understanding of individuals' work as well as the benefits of cloud computing services to them depend on the innovative trend of cloud computing services. Further, the expectations for personal benefit and those for organizational benefit of cloud computing services are different from each other. Leading firms in the global market have been actively engaged in the utilization of cloud computing services in the public sector as well as in private firms. In consideration of the importance of cloud computing services, using cloud computing services as the target of innovation diffusion research is important. The results of the study are expected to contribute to developing future research models for the diffusion of new technologies, such as big data, digital convergence, and Internet of Things.