• Title/Summary/Keyword: organic-soil

Search Result 3,700, Processing Time 0.031 seconds

Soil Organic Carbon Determination for Calcareous Soils (석회암 유래 토양의 토양유기탄소 분석법 연구)

  • Jung, Won-Kyo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.396-402
    • /
    • 2006
  • Soil organic carbon has long been considered as the most critical factor to evaluate the soil quality, fertility, and fertilizer prescription. In addition, soil organic carbon may impact on greenhouse gas effects and global warming. Because of that, the management of soil organic carbon is increasingly important not only for improving soil quality but also for managing soil as a greenhouse gas source. Both wet and dry combustion have been used to determine soil organic carbon. Many benefits, such as automation and less labor, could the dry combustion method become more popular. Inorganic form of carbon could overestimate soil organic carbon when the dry combustion method was applied. Determination of soil inorganic carbon may contribute to the improved accuracy of soil organic carbon analysis using dry combustion method. Objectives of this research were 1) to develop soil inorganic carbon determination method using modified digital pressure calcimeter and 2) to evaluate soil organic carbon from calcareous soils using the dry and wet combustion method. Results showed that the significant linear relationship was found between soil inorganic carbon content and pressure calcimeter output. Inorganic carbon ranged from 22% to 28% of total carbon in the calcareous soil samples. Soil organic carbon content by dry combustion for calcareous soil was determined by subtracting inorganic carbon measured by the digital pressure calcimeter from total carbon. Soil organic carbon determined by dry combustion method was significantly correlated with that by wet combustion method. In conclusion, the digital pressure calcimeter may use to improve soil organic carbon determination for the calcareous soils by subtracting of soil inorganic carbon from total carbon determined by dry combustion method.

Comparison of Soil Chemical Properties and Heavy Metal Contents in Organic and Conventional Paddy of Yongin and Anseong (용인과 안성 지역의 유기논 및 관행논에서 토양 화학 특성 및 중금속 함량 비교)

  • Gu, Bon-Wun;Lee, Tae-Gu;Kang, Ku;Hong, Seong-Gu;Hong, Seung-Gil;Jang, Tae-Il;Kim, Jin-Ho;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • The aim of this study is to investigate the chemical properties and heavy metal concentration of soils in conventional and organic paddy. We sampled and analyzed topsoil (0~15 cm) and subsoil (15~30 cm) of conventional and organic paddy fields in Yongin and Anseong, South Korea. The statistical significance between groups was determined by Duncan's multiple range test and correlation between soil properties was also analyzed. The results show that organic matter (OM) and T-N of conventional paddy soil were higher than those of organic paddy soil. However, higher T-P concentration was observed in organic paddy soil than conventional paddy soil. As, Pb, and Zn concentration in organic paddy soil were statistically lower than those in conventional paddy soil. The couple of water content (WC) & As, OM & T-N, T-P & $P_2O_5$, T-P & Zn, $P_2O_5$ & Zn, and Cr & Ni had a good positive correlation but the couple of WC & T-P, WC & Zn, T-P & As, and As & Zn had a strong negative correlation. It can be concluded that organic farming is beneficial to soil environment by reducing the amounts of organic matter, T-N, As, Pb, and Zn concentration in paddy soil when compared to conventional farming.

Biological Improvement of Reclaimed Tidal Land Soil(IV) Changes of Saline Soil by addition of Organic Acids (해안간척지 토양의 생물학적 토성개선에 관한 연구 (제4보) 유기산첨가에 따르는 토양성분의 제 변화에 대하여)

  • 홍순우
    • Journal of Plant Biology
    • /
    • v.12 no.4
    • /
    • pp.9-18
    • /
    • 1969
  • In the previous paper(part III), a certian relationships between the changes of chlorinity and organic acid released from organic material were seemed to be concened to each other in saline soil suspension. Such a possibility had been a cause to take this experiments and this experiment was carried out under the treatment of organic acid crystal, oxalic acid and succinic acid, to the soil suspension(soil: water=20g:40cc) directly. The amount of organic acid treated to the suspension were related to the contents of organic material, as amount of organic acid per gram of organic material(391.76mg). The saline soil suspension were grouped and treated with the acids in order of 78.35mg(Group 1), 391.76mg(Group 2) 979.4mg(Group 3), and 1958.8mg(Group 4), respectively. Treated suspension had been incubated at room temperature and extract from suspension was used for analysis. Followings are summary of this report. 1) Changes of pH in soil suspension appeared a little increase after the treatment of organic acid until 168 hours. 2) Total acidity of soil suspension showed a variation, however, the values of total acidity appeared not to be increased or decreased during the period of experiment. 3) Sugar contents of soil suspension was increased until 168 hours after treatment. These results are similar tendency to the previous paper. 4) Addition of organic acid to soil suspension was confirmed not to be effective method for desalination from saline soil. Chlorinity of group 3 and 4 which were treated with high concentration of organic acid showed a decrease comparing to control group.

  • PDF

Measurement of Soil Organic Matter Using Near Infra-Red Reflectance (근적외선 반사도를 이용한 토양 유기물 함량 측정)

  • 조성인;배영민;양희성;최상현
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.475-480
    • /
    • 2001
  • Sensing soil organic matter is crucial for precision farming and environment friendly agriculture. Near infra-red(NIR) was utilized to measure the soil organic matter. Multivariate calibration methods, including stepwise multiple linear regression(MLR), principal components recession(PCR) and partial least squares regression(PLS), were applied to soil spectral reflectance data to predict the organic matter content. The effect of soil particle size and water content was studied. The range of soil organic matter contents was from 0.5 to 11%. Near infrared (NIR) region from 700 to 2,500nm was applied. For uniform soil particle size, result had good correlation (R$\^$2/ = 0.984, standard error of prediction= 0.596). The effect of soil particle size could be eliminated with 1st order derivative of the NIR signal. However. moist soil had a little lower correlation. R$\^$2/ was 0.95 and standard error of prediction was 0.94% using the PLS method. The results showed the possibility of soil organic matter measurement using NIR reflectance on the field.

  • PDF

Effects of Animal Manure Compost, Tillage Method and Crop System on Soil Properties in Newly Organic Corn Cultivation Field (신규 유기농 옥수수 재배 시 가축분 퇴비, 경운방법 및 작부체계가 토양 환경에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Nam, Hong-Sik;Jung, Jung-A;Kong, Min-jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.31-43
    • /
    • 2018
  • This study was conducted to investigate the effects of organic farmland soil and nutrient management on soil properties depending on organic (animal manure compost and green manure [hairy vetch]) and chemical fertilization, tillage and no-tillage, and crop rotation (corn-wheat, corn-.hairy vetch). It was found that the application of organic matter such as animal manure compost and hairy vetch, increased the soil organic matter content, the soil microbial density and microbial biomass C content as compared with the chemical fertilizer treatment. It was also confirmed that the functional diversity of soil microbial community was increased. As a result of the comparison with the crop rotation and single cropping, the soil chemistry showed no significant difference between the treatments, but the corn-wheat and corn-hairy vetch rotation treatments tended to have higher microbial biomass C content and shannon's diversity index than the single cropping. Soil chemical properties of tillage and no-tillage treatments showed no significant difference between treatments. There was no statistically significant difference in substrate utilization of soil microbial community between tillage and no-tillage treatment. Correlation analysis between soil chemical properties and soil microbial activity revealed that soil organic matter content and exchangeable potassium content were positively correlated, with statistical significance, with substrate utilization, and substrate richness. To conclude, organic fertilization had positive effects on the short-term improvement of soil chemical properties and diversity of microbial communities.

A KINETIC ANALYSIS OF ORGANIC RELEASE FROM THE AQUIFER SOIL IN RIVERBANK/BED FILTRATION

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Experiments were performed to estimate the organic release from the aquifer soil in riverbank and/or riverbed filtration via a kinetic approach. Organic release was assumed as a reaction of first order regarding concentrations in both soil and water phases. The reaction rate constants were obtained by comparing the model predictions with the experimental data of organic release reaction and the equilibrium distribution of organic matter between water and soil phases. Results show that the organic release from the aquifer soil was not negligible under normal conditions in Korea reaching 4.7mg-COD/L-day. This indicates that manganese and iron start to be released from aquifer soil in the riverbank filtration in the middle reach of the Nakdong river if the travel time of the filtrate exceeds about 5 days. It was also seen that the COD of the soil organic matter was 0.89mg-COD/mg-OM and that 65% of the COD was BOD5.

Biological Characteristics of Organic Soil applying Rye (Secale cereal L.) as Green Manure for the Long Term (장기간 호밀을 풋거름작물로 시용한 유기농 토양의 생물학적 특징)

  • Bak, Gye-Ryeong;Lee, Gye-Jun;Kim, Tae-Yeong;Jee, Sam-Nyu;Kim, Chang-Seok;Lee, Hyeong-Bok;Lee, Eun-Kyeong;Song, Jae-Kyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.427-437
    • /
    • 2018
  • In this study, microorganism community characteristics of organic managed soil which applied rye (Secale cereal L.) as green manure for 25 years, were determined. The chemical properties of organic soil showed high level of organic matter and available $P_2O_5$, while the level of exchangeable cation was low. The analysis of dehydrogenase activity and carbon source utilization indicated that the values in on organic soil were significantly higher than those of the control. It suggested that the microorganism community of organic soil had high microorganism activity, compared to the control. In addition, when the 16S rRNA gene-targeted NGS (Next generation sequencing) analysis was conducted to estimate the class of bacterial community, the class level of bacterial taxon composition on organic soil showed higher portion of Sphingobacteriia, Acidobacteriia, Gammaproteobacteria, Solibacteres and Planctomycetia. By base on the results of various reports in which organic managed soil had high portion of Acidobacteriia and Planctomycetia, the characteristic of taxon composition in organic soil, which showed the high percentages of Ktedonobacteria, Sphingobacteriia, Acidobacteriia and Gammaproteobacteria, was resulted from the application of rye as a green manure for the long term. However, further researches were needed because the crop effect was not considered in this study.

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

Elution Patterns and Hydraulic Conductivity Depending on the Incorporated Organic Matter Contents in a Multi-Layered Soil Column (토양내 유기물 함량 변화에 따른 다층 토주의 수리전도도 및 용출 경향)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • This observation was to investigate the influence of raw organic matter incorporated into soil at various rates on hydraulic conductivity and elution of solute throughout soil column. Generally the organic matter content in a practical agricultural field was approximately 3%. However, the application rate of organic matter in the field tends to rapidly increase in these days. Therefore, we raised the application rate of organic matter up to 10% in this investigation. From the experiment, we found that the hydraulic conductivities rapidly decreased with increasing rate of organic matter as well as rapid decrease in total volume of eluent during the same period. And electrical conductivities in the effluent significantly decreased after 2 pore volume, resulting in approaching to the criteria of saline soli. From this we could assume that the organic matter may influence the crop growth in the beginning. However excessive irrigation in the field may cause saturation of soil leading to reduction of soil. Therefore, there must be a management methods in application of organic matter with respect to soil water control.

  • PDF

Soil Physico-chemical Properties of Organic Grapes Farms with Different Culture Facilities and Soil Management Practices

  • Kim, Sun-Kook;Kim, Byeong-Sam;Kang, Beom-Ryong;Yang, Seung-Koo;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyeong-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.399-407
    • /
    • 2013
  • Organic grape was generally produced in rainshield or plastic greenhouse culture while most of fruits were produced in open field. But little attention has been given to soil properties with different culture facilities in organic grape cultivation. This study was conducted to investigate soil physico-chemical properties of organic grapes farms with different culture facilities and soil management practices. Organic fertilizer was main resource to manage soil at organic grapes farms. Organic grapes farms were applied with total amount of organic fertilizer at one time, either at basal or additional fertilization, whereas conventional grapes farms applied with split fertilization. Bulk density and penetration resistance of soil were lower at both rainshield and green manure-applied plastic greenhouse cultures than those at clean plastic greenhouse culture. Especially, in plastic greenhouse, sod culture with natural weed after green manure application was more effective than general sod culture in improving physical properties of the rhizosphere. The contents of organic matter, available phosphate and exchangeable potassium tended to increase in the soils applied with green manure, and the difference of soil chemical properties were significant between rainshield and plastic greenhouse cultures. The optimum soil management was required in plastic greenhouse because pH, available phosphate and exchangeable cations reached over optimum range. Consequently, the ground cover management is the key factor to affect the chemical properties as well as soil physical properties extensively in plastic greenhouse. It is found that sod culture with natural weed after green manure application resulted in enhancement of utilization efficiency of nitrogen, phosphoric acid and potassium in soil in comparison with general sod culture.