• 제목/요약/키워드: organic-inorganic composite resin

검색결과 14건 처리시간 0.016초

PMMA와 캡슐화된 $CaCO_3$ Core-Shell 라텍스 제조와 물성연구 (Preparation and Characterization of $CaCO_3$ Encapsulation by PMMA Core-Shell latex)

  • 임종민;설수덕
    • Elastomers and Composites
    • /
    • 제38권4호
    • /
    • pp.303-315
    • /
    • 2003
  • 계면활성제가 흡착된 $CaCO_3$를 제조하여 흡착된 유화제의 농도, 개시제의 종류와 농도, 교반속도 및 반응온도에 따라 무기/유기계 core-shell 입자를 제조하였다. 제조된 복합입자의 전환율을 측정하여 중합의 최적조건과 분자량측정, 가수분해도, 필름형성온도, 유리전이온도, 입자경 측정 그리고 입자의 형태를 고찰하여 다음과 같은 결론을 얻었다. 무기/유기 core-shell 입자의 합성의 경우에는 유화제인 SDBS를 0.5 wt% 첨가한 $CaCO_3$를 core로 하여 MMA와 $3.16{\times}10^{-3}mol/L$ 농도의 APS를 단계적으로 주입하여 중합함으로서 $CaCO_3$ 입자 표면에서 MMA의 중합을 잘 유도할 수 있었으며 중합 도중 새로운 폴리머 입자의 생성이 적었다. 무기/유기계의 core-shell 입자의 경우는 염산에 의한 $CaCO_3$ 분해를 이용하여 캡슐화를 조사하고 시차주사열량계(DSC)에 의한 유리전이온도와 열분해 감소중량을 측정한 결과 외부의 유기 폴리머만 분해되는 특성, 에폭시 수지에서의 분산이 캡슐화 되지 않은 $CaCO_3$보다 우수한 특성, 입자경 분포도 측정 결과 입자경 분포도가 고르지 않고 그리고 전자 현미경에 의한 입자모양이 구형화된 특성등으로 core-shell 입자의 구조와 특성을 확인하였다.

Fiber Reinforced Inlay Adhesion Bridge

  • Cho, Lee-Ra;Yi, Yang-Jin;Song, Ho-Yong
    • 대한치과보철학회지
    • /
    • 제38권3호
    • /
    • pp.366-374
    • /
    • 2000
  • FRC/ceromer system provides the clinician with a durable, flexible, and esthetic alternative to conventional porcelain fused to metal crowns. FRC is the matrix which is silica-coated and embedded in a resin matrix. The ceromer material which is a second generation indirect composite resin contains silanized, microhybrid inorganic fillers embedded in a light-curing organic matrix. FRC/ceromer restoration has a several advantages: better shock absorption, less wear of occluding teeth, translucency, color stability, bonding ability to dental hard tissues, and resiliency. It has versatility of use including inlay, onlay, single crown, and esthetic veneers. With adhesive technique, it can be used for single tooth replacement in forms of inlay adhesion bridge. In single tooth missing case, conventional PFM bridge has been used for esthetic restoration. However, this restoration has several disadvantages such as high cost, potential framework distortion during fabrication, and difficulty in repairing fractures. Inlay adhesion bridge with FRC/ceromer would be a good alternative treatment plan. This article describes a cases restored with Targis/Vectris inlay adhesion bridge. Tooth preparation guide, fabrication procedure, and cementation procedure of this system will be dealt. The strength/weakness of this restoration will be mentioned, also. If it has been used appropriately in carefully selected case, it can satisfy not only dentist's demand of sparing dental hard tissue but also patient's desire of seeking a esthetic restorations with a natural appearance.

  • PDF

셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구 (A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites)

  • 홍상준;이아정;주상현;신영은;박태훈
    • Composites Research
    • /
    • 제36권2호
    • /
    • pp.126-131
    • /
    • 2023
  • 기존의 상용 플라스틱으로 인한 환경 오염에 대한 우려가 높아지면서 대체 재료로서 생분해성 고분자에 대한 연구가 주목을 받고 있다. 본 연구는 생분해성 열가소성 수지인 폴리 젖산에 유기 핵제의 도입으로 물성 강화 및 100% 생분해 가능한 나노복합재 개발을 목표로 한다. 그에 따라 무기 핵제의 대체재로 친환경 소재인 셀룰로오스 나노섬유를 채택하였다. 폴리 젖산 내 셀룰로오스 나노섬유의 균일한 분산을 위해 동결 건조 방식으로 나노화된 섬유 형상을 유지시켰으며, 이축압출기로 1차 교반을 진행하고, 사출 성형을 통해 이중 교반된 물성 시험용 시편을 제작하였다. 보강된 결정성을 확인하기 위해 시차주사 열량분석법을 사용하였고 1 wt%의 셀룰로오스 나노섬유가 보강재 및 핵제로서 작용하여 냉결정화온도가 약 14℃ 가량 감소하며, 결정화되는 정도 또한 증가한 것을 확인하였다. 본 연구는 기존 생분해성 고분자의 무기 핵제를 유기 나노소재로 대체함으로써 100% 생분해 가능한 친환경 나노복합재 개발하여 강화된 물성의 플라스틱 소재 개발을 위한 친환경적 대안을 제시한다.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • 제9권4호
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.