• Title/Summary/Keyword: organic ultra thin film

Search Result 73, Processing Time 0.022 seconds

Ultra Thin Film Encapsulation for Flexible OLED (플렉시블 유기 EL 소자를 위한 초박막 보호층)

  • Lim, J.S.;Shin, P.K.;Lim, K.B.;Song, J.H.;Kim, C.Y.;Lee, B.S.;Jeung, Y.S.;Lim, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1412-1413
    • /
    • 2006
  • In this research, an organic thin 13 passivation layer was newly adopted to prefect the organic layer from ambient moisture and oxygen. As the organic thin film passivation layer, poly methyl methacrylate thin films (ppMMA) were deposited using a plasma polymerization technique. In order to their passivation performance for OLEDs, water vapor transmission rate (WVTR) of the ppMMAs were analyzed and luminance-current-voltage (L-I-V)/luminance-time (L-T) characteristics of the OLEDs with and without ppMMA passivation layer were investigated. The OLEDs had a structure of ITO/TPD (HTL)/Alq3(EML&ETL)/Al. The OLED with ppMMA passivation layer showed improved L-T performance than that of without ppMMA passivation layer.

  • PDF

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Lifetime improvement of Organic Light Emitting Diode by Using LiF Thin Film and UV Glue Encapsulation

  • Hsieh, Huai-En;Huang, Bohr-Ran;Juang, Fuh-Shyang;Tsai, Yu-Sheng;Chang, Ming-Hua;Liu, Mark.O.;Su, Jou-yeh
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1703-1705
    • /
    • 2007
  • Before the ultra-violet glue encapsulation, the research evaporated LiF thin film on device surface to be the extra packaging layer for improving the lifetime of organic light-emitting diode. The formula of UV glue was specially developed. We found 100 nm LiF is the optimum thickness. The best lifetime obtained by using LiF and special UV glue is 2.4 times longer than those by commercial UV glue.

  • PDF

Electrical Properties by Applied Electric Field of Polyimide Ultra Thin Films (Polyimide초박막의 전계인가에 따른 전기특성)

  • Choi, Y.I.;Chon, D.K.;Koo, H.B.;Kim, C.;Kyun, Y.S.;Lee, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.73-76
    • /
    • 1998
  • We give pressure stimulation into organic thin films and detect the induced displacement current. then manufacture a device under the accumulation condition that the state surface pressure is 15[mN/m]. In processing of a device manufacture. We can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/organic thin films(polyimide)/Au, the number of accumulated layers are 31,35, and 41. I-V characteristic of the device is measured from 0[V] to +5[V]. The maximum value of measured current is increased as the number of accumulated layers are decreased. The resistance for the number of accumulated layers, the energy density for an input voltage show desired results, and the insulation of a thin film is better as the interval between electrodes is larger.

  • PDF

Organic TFT fabricated on ultra-thin flexible plastic with a rigid glass support

  • Son, Young-Rae;Han, Seung-Hoon;Lee, Sun-Hee;Lee, Ki-Jung;Choi, Min-Hee;Choo, Dong-Joon;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.756-759
    • /
    • 2007
  • We have fabricated pentacene OTFT on ultra-thin flexible polyimide film with a rigid glass support. Polyimide film of the thickness of $10{\mu}m$ has formed on glass by spin coating from the solution. After the entire OTFT process, the OTFT exhibited a fieldeffect mobility of $0.4\;cm^2/Vs$, an $I_{on}/I_{off}$ ratio of $10^7$ and a subthreshold swing of 0.7 V/dec. The OTFT on polyimide film has been detached from the glass support and laminated on a plastic support of $130\;{\mu}m-thick$ PET film. After the detach process, in spite of the degrading of its field-effect mobility, the OTFT showed high $I_{on}/I_{off}$ as high $as{\sim}10^6$.

  • PDF

Efficiency Enhancement of Organic Light Emitting Diode Using $TiO_2$ Buffer Layer

  • Lee, Heui-Dong;Oh, Min-Cheol;Kim, Jae-Chang;Yoon, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.632-635
    • /
    • 2004
  • We have studied the effect of $TiO_2$ layer deposited by RF magnetron sputtering which is used as an ultra thin hole-injection buffer layer in organic light-emitting diode (OLED). The $TiO_2$ thin film layer prevents metallic ions from diffusing from the ITO layer to the organic layers and improves the balance of hole and electron injections and the interface characteristics between the electrode and the organic layer. With 2 nm thickness of $TiO_2$, the quantum efficiency was improved by 45 % compared to the device fabricated without the $TiO_2$ layer.

  • PDF

Preparation of tungsten metal film by spin coating method

  • Lee, Kwan-Young;Kim, Hak-Ju;Lee, Jung-Ho;Sohn, Il-Hyun;Hwang, Tae-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Metal thin films, which are indispensable constituents of ULSI (Ultra Large Scale Integration) circuits, have been fabricated by physical or chemical methods. However, these methods have a drawback of using expensive high vacuum instruments. In this work, the fabrication of tungsten metal film by spin coating was investigated. First of all, inorganic peroxopolytungstic acid (W-IPA) powder, which is soluble in water, was prepared by dissolving metal tungsten in hydrogen peroxide and by evaporating residual solvent. Then, the solution of W-IPA was mixed with organic solvent, which was spin-coated on wafers. And then, tungsten metal films, were obtained after reduction procedure. By selecting an appropriate organic solvent and irradiating UV, the sheet resistance of the tungsten metal film could be remarkably reduced.

A Study on the Electrical Properties of Organic Ultra Thin Films with Polyimide (폴리이미드 유기초박막의 전기적 특성에 관한 연구)

  • Jeong, Soon-Wook;Lim, Hyun-Sung;Yoon, Dong-Han;Jeon, Yoon-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.73-78
    • /
    • 2002
  • The polyimide(PI) Langmuir-Blodgett(LB) ultra thin films were prepared by imidizing the PAAS LB films of PMDA and benzidine system with a thermal treatment at $250^{\circ}C$ for 30min, where the PAAS LB films were formed on substrates by using LB technique. The thicknesses of one layer of PAAS and PI LB film that deposited at the surface pressure of 27mN/m were 20.9 and 4A, respectively. At low electric field, ohmic conduction($I^{\propto}$ V) was observed and the calculated electrical conductivity was about $4.23{\times}10^{-15}{\sim}9.81{\times}10^{-15}S/cm$. The dielectric constant of LB film was about 7.0.

A Study on the Enhancement of Electrical Conductivity of Copper Thin Films Prepared by CVD Technology (화학적기상증착법에 의한 구리박막의 전기전도도 개선에 관한 연구)

  • 조남인;김용석;김창교
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.459-466
    • /
    • 2000
  • For the applications in the ultra-large-scale-integration (ULSI) metallization processing copper thin films have been prepared by metal organic chemical vapor deposition (MOCVD) technology on TiN/Si substrates. The films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were then annealed in a vacuum condition after the deposition and the annealing effect to the electrical conductivity of the films was measured. The grain size and the crystallinity of the films were observed to be increased by the post annealing and the electrical conductivity was also increased. The best electrical property of the copper film was obtained by in-situ annealing treatment at above 40$0^{\circ}C$ for the sample prepared at 18$0^{\circ}C$ of the substrate temperature.

  • PDF

Fabrication of Ultra Thin Films with (3-docosyl benzimidazolium)-TCNQ(1:1) Complex by Langmuir-Blodgett(LB) Technique(1) (Langmuir-Blodgett(LB)법을 이용한 (3-docosyl benzimidazolium)-TCNQ(1:1) 착물의 초박막 제작(1))

  • Jeoung, Soon-Wook;Hwang, Kyo-Hyun;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.89-92
    • /
    • 1994
  • Ultra thin organic films, (3-docosyl benzimidazolium)-TCNQ(1:1)complex, were deposited onto ordinary microscope slide glass substrates with a Langmuir-Blodgett technique. II-A isotherms were studied to find optimum conditions of deposition by varying temperature. Anisotropic de electrical conductivities were measured at room temperature. They are about $5.21{\times}10^{-12}S/cm$ along the direction of film surface, and $(2.73{\sim}4.40){\times}10^{-16}S/cm$ in the vertical direction.