• Title/Summary/Keyword: organic solvent-based electrolytes

Search Result 6, Processing Time 0.018 seconds

Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode

  • Kim, Kyungmin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.187-191
    • /
    • 2014
  • This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate ($PYR_{14}BF_4$) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a common salt. Using the $PYR_{14}BF$ ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Organic Electrolytes (페놀계 활성탄소섬유 전극과 유기성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • An, Kay Hyeok;Kim, Jong Huy;Shin, Kyung Hee;Noh, Kun Ae;Kim, Tae Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.822-827
    • /
    • 1999
  • The specific capacitance characteristics which were of the electric double layer capacitors(ELDC) made of phenol based activated carbon fiber(ACF) electrodes and organic electrolytes has been investigated with respect to different specific surface area of electrodes and different kinds of organic electrolytes. Throughout charge-discharge cell tests, it has been found that larger surface area and larger pore diameter of electrodes contribute to increase the specific capacitance. Binary mixture of organic solvent with propylene cabonate(PC) and tetrahydrofuran(THF) for 1 M-$LiClO_4$ electrolyte has a higher specific capacitance than single solvent of PC or mixed solvent with PC and diethyl cabonate(DEC). Also, even though 1 M-tetraethylamonium perchlorate(TEAPC) of organic electrolyte shows higher specific capacitance, it has longer charge time because of its lower ion mobility.

  • PDF

Fluoroethylene Carbonate Addition Effect on Electrochemical Properties of Mixed Carbonate-based Organic Electrolyte Solution for a Capacitor

  • Kim, Mingyeong;Kim, Ick-Jun;Yang, Sunhye;Kim, Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.466-470
    • /
    • 2014
  • In this paper, organic solvent electrolytes were prepared by a mixture of propylene carbonate (PC), dimethyl carbonate (DMC), tetraethylammonium tetrafluoroborate ($TEABF_4$)s to evaluate the ionic properties of propylene carbonate (PC)/dimethyl carbonate (DMC) mixtures as solvents for a capacitor application, in view of improving the electrochemical performances. The bulk resistance and interfacial resistance of the mixture electrolytes were investigated using an AC impedance method. The morphology of carbon-based electrodes which were contained in different electrolytes was analyzed by scanning electron microscopy (SEM) method. From the experimental results, by increasing the FEC content, capacitance of electrodes was increased, and the interfacial resistance was decreased. In particular, by a content of 2 vol % FEC in 0.2 M $TEABF_4$ PC/DMC solvent, the electrolyte showed the superior capacitance. However, when FEC content exceeds 2 vol %, the capacitance was decreased and the interfacial resistance was increased.

Characterization of a New Poly(acrylonitrile-itaconate) based Gel-electrolyte (새로운 poly(acrylonitrile-itaconate)공중합체를 기초로 한 젤-전해질의 특성)

  • Choi B. K.;Kim S. H.;Gong M. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.169-172
    • /
    • 2000
  • A new gel polymer electrolyte based on the modified polyacrylonitrile (PAN), polyacrylonitrile-co-bis[2-(2-methoxyethoxy)ethyl]itaconate (abbreviated as PANI) copolymer was synthesized in expectation of enhanced trapping ability of liquid electrolytes. PAN and PANI blend was complexed with organic solvents, ethylene carbonate (EC) and dimethyl carbonate (DMC), and $LiClO_4$ salt. The highest room temperature conductivity of $2\times10^{-3}\;Scm^{-1}$ was found for a film of 25PAN+10PANl+50EC/DMC+$15LiClO_4$. The solvent-rich crystalline part decreases due to the blending of PANI and therefore number of charge carriers increases giving higher ionic conductivity. The addition of PAM as a host polymer in the PAN-based gels has beneficial effects such as higher ionic conductivity, better thermal characteristics, better miscibility with solvent, wider electrochemical stability, and better interfacial stability with lithium electrode, though it exhibits slightly less mechanical rigidity.

Electrochemical Characteristics of Polyurethane-based Polymer Electrolyte for Lithium Sulfur Battery (리튬 유황전지용 폴리우레탄 고분자 전해질의 전기화학적 특성)

  • Kim, Hyeong-Ju;Shin, Joon-Ho;Kim, Jong-Hwa;Kim, Ki-Won;Ann, Hyo-Jun;Ahn, Ju-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.47-51
    • /
    • 2002
  • Polyurethane was used as matrix for polymer electrolytes with liquid electrolyte consist of organic solvent as ethylene carbonate(EC), propylene carbonate(PC), and tetraethylene glycol dimethylether(TG) and 1M $LiCF_3SO_3$, which has high mechanical strength and porosity. Electrochemical properties fur polyurethane electrolytes with various liquid electrolytes were evaluated. The amount of immersed liquid electrolyte for TG with 1M $LiCF_3SO_3$ was increased to about $750\%$ by weight, and initial discharge capacity and cycle performance was better than others. Ionic conductivity for TG/EC(v/v,1:1) and PC/EC(v/v, 1:1) with 1M $LiCF_3SO_3$ was about $3.15\times10^{-3} S/cm, \;3.18\times10^{-3}S/cm$

Preparation and Characterization of a Cross-Linked Anion-Exchange Membrane Based on PVC for Electrochemical Capacitor (전기화학 캐퍼시터용 PVC기반 가교 음이온교환 멤브레인의 제조 및 특성)

  • Kim, Young-Ji;Kim, Soo-Yeoun;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.903-913
    • /
    • 2021
  • Three-type PVC membranes denoted by AEM-1, AEM-2, and AEM-3 with a cross-linked anion-exchange group were prepared by substitution reaction of PVC with triethyldiamine (TEDA), 1,4-dimethylpiperazine (DMP), and 1,4-bis(imidazol-1-ylmethyl)benzene (BIB) in cyclohexanone, respectively. We confirmed the successful preparation of the AEM-1, AEM-2, and AEM-3 via ionic conductivity (S/cm), water uptake (%), contact angle, ion-exchange capacity (meq/g), thermal properties, SEM and XPS analysis, respectively. The electrochemical capacitor experiments using PVC membrane with cross-linked anion-exchange group in organic electrolytes were performed. The prepared AEM-1, AEM-2 AEM-3 have a good stability by charge and discharge performance in organic electrolyte. As a result, the AEM-2 and AEM-3 membrane based on PVC prepared by the solvent casting method after substituent reaction is suitable for the use as a separator in organic electrochemical capacitor (supercapacitor).