• Title/Summary/Keyword: organic solvent tolerant lipase

Search Result 9, Processing Time 0.03 seconds

S5 Lipase : An Organic Solvent Tolerant Enzyme

  • Zaliha Raja Noor;Rahman Raja Abdul;Baharum Syarul Nataqain;Salleh Abu Bakar;Basri Mahiran
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.583-590
    • /
    • 2006
  • In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of pro-duction were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions ($Mg^{2+}$) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, $Na^+$, was found to stimulate the production of S5 lipase.

Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5006 (유기용매내성세균 Bacillus sp. BCNU 5006의 유용성)

  • Choi, Hye-Jung;Hwang, Min-Jung;Kim, Bong-Su;Jeong, Yong-Kee;Joo, Woo-Hong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • In the screening process of organic solvent tolerant bacteria showing good growth in media containing several kinds of organic solvents, one strain was isolated and identified as Bacillus sp. BCNU 5006. The strain was able to tolerate many organic solvents including benzene, toluene, xylene, octane, dodecane, butanol and ethylbenzene. Likewise, it could also utilize these solvents as the sole source of carbon with significant enzyme production. The lipolytic enzyme stability of Bacillus sp. BCNU 5006 was studied in the presence of several kinds of solvents at a 25% (v/v) concentration. The highest enzyme stability was observed in the presence of octane (107%), followed by ethylbenzene (88%), decane (86%), and chloroform (85%). Especially, BCNU 5006 lipase was determined to be more stable than immobilized enzyme (Novozyme 435) in the presence of octane, chloroform and xylene. This organic solvent tolerant Bacillus sp. BCNU 5006 could be expected as a potential bioremediation agent and biocatalyst for biodegradation and provide on organic-solvent-based enzymatic synthetic method in industrial chemical processes.

Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154 (Pseudomonas sp. BCNU 154 유래의 유기용매 내성 리파아제)

  • Choi, Hye Jung;Hwang, Min Jung;Seo, Jeoung-Yoon;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1246-1251
    • /
    • 2013
  • An organic solvent-tolerant lipase of Pseudomonas sp. BCNU 154 that was isolated from wastewater in the industrial complex region had optimal activity at $37^{\circ}C$ and pH 8. This crude extracellular lipase from BCNU 154 exhibited maximum stability in toluene, retaining about 6.01 U/ml (117.53%) activity for 2 h. $Ca^{2+}$, $Mg^{2+}$, $NH_4{^+}$, and $Na^+$ ions and triton X-100 activated the enzymes, whereas $Ba^{2+}$, $Hg^{2+}$, and $Zn^{2+}$ ions inhibited their activity. Pseudomonas sp. BCNU 154 lipase revealed stable activity comparable to that of the commercial immobilized Novozym 435. Thus, this organic solvent-tolerant lipase could have potential as a whole cell biocatalyst in industrial chemical processes without the use of immobilization.

Evaluation of the Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5005 (유기용매내성 세균 Bacillus sp. BCNU 5005의 유용성에 대한 검증)

  • Choi, Hye-Jung;Hwang, Min-Jung;Jeong, Young-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.700-705
    • /
    • 2011
  • Using enrichment procedures, we isolated organic solvent-tolerant Bacillus sp. BCNU 5005 from waste water and soil in the Ulsan industrial plant region. BCNU 5005 had a maximum similarity of 98% with B. subtilis and was designated as B. subtilis based on phylogenetic analyses using 16S rDNA sequences. Generally, most bacteria and their enzymes are destroyed or inactivated in the presence of high concentrations of organic solvents. However, the lipase activity of B. subtilis BCNU 5005 was very stable in the presence of various kinds of solvents (25%, v/v) except chloroform, ethylbenzene and decane. Furthermore, BCNU 5005 was determined to have a degradative ability towards organic solvents. This organic solvent tolerant Bacillus sp. BCNU 5005 could be used as a new potential resource for biotransformation and bioremediation.

Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 (Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성)

  • Choi, Hye Jung;Hwang, Min Jung;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.603-607
    • /
    • 2016
  • A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.

Solvent-tolerant Lipases and Their Potential Uses (유기용매 내성 리파아제와 그 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1381-1392
    • /
    • 2017
  • This review described solvent-tolerant lipases and their potential industrial, biotechnological and environmental impacts. Although organic solvent-tolerant lipase was first reported in organic solvent-tolerant bacterium, many organic solvent-tolerant lipases are in not only solvent-tolerant bacteria but also solvent-intolerant bacterial and fungal strains, such as the well-known Bacillus, Pseudomonas, Streptomyces and Aspergillus strains. As these lipases are not easily inactivated in organic solvents, there is no need to immobilize them in order to prevent an enzyme inactivation by solvents. Therefore, the solvent-tolerant lipases have the potential to be used in many biotechnological and biotransformation processes. With the solvent-tolerant lipases, a large number insoluble substrates become soluble, various chemical reactions that are initially impossible in water systems become practical, synthesis reactions (instead of hydrolysis) are possible, side reactions caused by water are suppressed, and the possibility of chemoselective, regioselective and enantioselective transformations in solvent and non-aqueous systems is increased. Furthermore, the recovery and reuse of enzymes is possible without immobilization, and the stabilities of the lipases improve in solvent and non-aqueous systems. Therefore, lipases with organic-solvent tolerances have attracted much attention in regards to applying them as biocatalysts to biotransformation processes using solvent and non-aqueous systems.

Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 171 (Pseudomonas sp. BCNU 171이 생산하는 유기용매 내성 리파아제)

  • Choi, Hye Jung;Kwon, Gi-Seok;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.345-348
    • /
    • 2015
  • An organic solvent stable lipase from solvent-tolerant Pseudomonas sp. BCNU 171 had an optimal pH of 8 and an optimal temperature of 37℃. This crude extracellular lipase from BCNU 171 exhibited increased stability in the presence of various types of solvents at high concentrations (25%, v/v). The lipase stability was found to be highest in the presence of xylene (137%), followed by toluene (131%), octane (130%), and butanol (104%). Overall, BCNU 171 lipase tended to be more stable than immobilized commercial lipase (Novozyme435) in the presence of organic solvents. Furthermore, BCNU 171 lipase maintained about 90% of its enzyme original activity in the presence of NH4+, Na+, Ba2+, Hg2+, Ni2+, Cu2+, and Ca2+ion and significantly increased its enzyme activity in the presence of various emulsifying agents. Thus, the organic solvent stable lipase from Pseudomonas sp. BCNU 171 could be usable as a potential whole cell biocatalyst and for synthetic applications of enzymes for industrial chemical processes in organic solvents without using immobilization.

Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071

  • Su, Hongfei;Mai, Zhimao;Yang, Jian;Xiao, Yunzhu;Tian, Xinpeng;Zhang, Si
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1067-1076
    • /
    • 2016
  • The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30℃ and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0℃ and good stability at temperatures below 35℃. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30℃. Its activity was slightly affected by some metal ions such as K+, Ca2+, and Na+. The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.