• Title/Summary/Keyword: organic paint

Search Result 80, Processing Time 0.026 seconds

Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

  • Jo, Du-Hwan;Kwon, Moonjae;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances.

Preliminary importance analyses on model for pH in the presence of organic impurities in the aqueous phase for a severe accident of a nuclear power plant

  • Yoonhee Lee;Yong Jin Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2079-2091
    • /
    • 2024
  • In this paper, a model is developed for calculating pH in the presence of organic impurities due to dissolution of paint and/or continuous injection of organic impurities in the sump. The model is implemented in the AnCheBi code for the analysis of chemical behaviors of the iodine in the containment when the pH changes during a severe accident. Validation of the model is performed with P10T2 and P11T1 experiments carried out by AECL in Canada under the BIP project. Importance analyses of the pH calculation model in the AnCheBi code are then performed with the aforementioned experimental data via Latin hypercube sampling on the reaction coefficients, sensitivity analyses of AnCheBi, and calculation of the correlation coefficients between the reaction coefficients and figure of merits (the pH and the concentrations of the various iodine species). From the importance analyses, we provide the sensitivity of the pH calculation model to the change of pH and the concentrations of the various iodine species and the reaction coefficients related with the dominant phenomena underlying the change of pH and the concentrations of the species.

Reconstruction of High-Pressure Paint Gun Injection Injured Finger Using Free Flaps with T-Shaped Pedicles and Multiple Venous Anastomoses

  • Lee, Jun Beom;Choi, Hwan Jun;Kim, Jun Hyuk;Cheon, Nam Ju;Lee, Young Man
    • Archives of Reconstructive Microsurgery
    • /
    • v.24 no.2
    • /
    • pp.75-78
    • /
    • 2015
  • High-pressure (HP) injection injury to the upper extremity often causes a very serious clinical problem, leading to poor outcomes, including amputation, so that a true surgical emergency is required. The outcomes can be improved with emergent wide surgical debridement. However the diagnosis of these injuries is often delayed due to underestimated evaluation at first appearance and lack of common knowledge of the seriousness of this injury. The type and pressure of the infecting material is an important factor in prognosis and organic solvents infected pressure injury can cause poor outcome and increased amputation rate. In this case, we report on reconstruction of HP oil-based paint injection injuries of the finger using T-shaped pedicles and multiple venous anastomoses. In this concept, arterial flow can be maintained by the reverse flow of distal anastomosis when there is difficulty with the proximal anastomosis. And venous flow can be preserved by deep and superficial vein anastomosis. This concept has various advantages including preserving patency of the pedicle in chronic vasculopathy or trauma cases and maintaining the arterial flow by the reverse flow of distal anastomosis and can improve the free flap survival by a two vascular anastomosis system.

A Prediction Model for TVOC and HCHO Emission of Paint Materials (페인트에서 방출되는 TVOC 및 HCHO 방출량 예측모델)

  • Kim, Hyung-Soo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • It is highly recognized that there is need for protection against indoor air pollution, as we realize environmental pollution is growing, For example, in an indoor environment, a person spends more than 80 percent of their time inside the building. Thus, concern about indoor decoration materials is growing, since they cause pollution in the rooms of an apartment, as well as in offices. As the indoor decoration materials become more diverse and lusurious, so the effect of VOCs(Volatile Organic Compounds) and HCHO(Formaldehy) is growing. The indoor decoration materials cause the Sick Building Syndrome, such as headaches, dizziness, or lack of concentraion, and they in turn cause serious deterioration in people's health. In this study, I probed the status of the indoor air pollution and carried on an investigation and analysis about the prevention technique. In doing so, I performed experimental tests and an assessment of the indoor decoration materials of an apartment. I also examined elements of the emitted and the emission. Finally, I examined the character of emissions, by changing environmental conditions, such as the temperature, humidity, and ventilation. With respect to VOCs tests, I applied the method of solid state adsorption using the adsorptive tube, based on the measurement of the American EPA TO-17, ASTM 5116-97, and the measurement of the Japanese Wall Decoration Industrial Association. The tested sample was analyzed by High Performance Liquid Chromatography, after going through the process of dissolvent extraction. As subjects of the test, Paint were selected. The process of this test is as follows; first, I figured out the character of the emission, by measuring the emitted concentration of VOCs and HOHC from the indoor decoration materials of an apartment. Second, I made a small-scale chamber and the test was processed in the chamber in order to suggest an environment-friendly prediction modlel development.

Development of exchange period program for chemical cartridge feasible in the work spot (1) - Experiment of estimated breakthrough time using discarded cartridges (작업장에서 사용 가능한 방독마스크 정화통 교체주기 프로그램의 개발(I) - 폐정화통을 이용한 파과시간 예측 실험)

  • Han, Don-Hee;Lee, Sang-Young
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.204-215
    • /
    • 2008
  • Many researches for service-life of chemical cartridges of respirators have been performed in many countries. On the result of these researches a few softwares programs were eventually developed to be used. In spite of that, it is difficult to apply these researches and softwares practically in the work spot because of too many factors that influence on service-life of chemical cartridges. This study was the first of two conducted for the purpose of developing program for estimating exchange period or service-life of chemical cartridges available feasibly in the workplaces. Collecting plan of cartridges discarded after use is in principle that three cartridges from three workers at a time, three steps of 1/2 exchange time due to smelling, just routine exchange time and 1.2 to 1.3 expanded time of routine exchange, total nine cartridges are collected in the same job site. 33 cartridges for organic vapor were collected in paint spray process of ship yard and paint factory, and 6 cartridges for acid were collected in plating process. These cartridges were analysed the remaining breakthrough time in 3M Innovation Center. Challenge vapor and breakthrough concentration were complied with Korean regulation for chemical cartridge respirators. Estimated breakthrough time was determined from previously used time plus breakthrough time for the remaining. Exchange period of cartridge would be the shortest time among three estimated breakthrough times. On the result breakthrough time for organic vapor was found to be relatively easily estimated, but that for acid aerosol or vapor was difficult to be confident. Even though this method was difficult to be precisely predicted exchange period of cartridge, it could be an alternative program practically available in the job site.

Effect of Surface Finishing Materials on the Moisture Conditions in Concrete: Vapor and Water Permeability of Finishing Materials Under Changing Environmental Conditions

  • Ryu, Dong-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • Permeability to vapor and water among other performances required for finishing materials is dealt with in this study. The relative moisture content of concrete coated/covered with a finishing material was experimentally investigated while changing the environmental conditions including temperature, relative humidity, and rainfall. An organic paint (water-based urethane), organic synthetic resin emulsion-type film coating (film coating E), and inorganic porcelain tiles were selected as the finishing materials. When compared from the aspect of vapor and water permeability, the vapor permeability and water permeability of water-based urethane were high and low, respectively; those of film coating E were high and high, respectively; and those of porcelain tiles were low and low, respectively. This means that the moisture state of concrete structures is governed not only by the environmental conditions but also by the performance of finishing materials. It is therefore of paramount importance to appropriately select a finishing material to address the specific deteriorative factors involved in the concrete structure to be finished.

A Case of Hypersensitivity Pneumonitis in an Automobile Paint Sprayer (자동차 페인트 도장공에서 발생한 과민성 폐렴 1예)

  • Oh, Mi Na;Cho, Myoung Jin;Baek, Hoon Ki;Cho, Ki Sung;Kang, Ji Hoon;Kim, Young;Kwak, Jin Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.541-545
    • /
    • 2008
  • Hypersensitivity pneumonitis (HP) is an immunologically-mediated disease resulting from repeated exposure to sensitizing agents, such as organic dusts or chemicals. Isocyanate is a volatile and highly reactive chemical that is extensively used in the manufacturing of automobiles, upholstery, and polyurethane foam. Occupational respiratory diseases associated with isocyanate, such as bronchial asthma, are well-known. It is thought that HP is one of the rare diseases induced by isocyanate with a very low frequency worldwide. We report a case of HP in an automobile painting sprayer which appeared to be associated with isocyanate.

A Study on the Reduction Process of VOCs Emission from Paint Booth - A Hybrid Process of Biotrickling Filter and Activated Sludge Reactor

  • Lim Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.41-48
    • /
    • 2005
  • A novel hybrid system composed of a biotrickling filter and an activated sludge reactor was investigated under the conditions of four different SRTs (sludge retention times). The performance of the hybrid reactor was found to be directly comparable among the four different sludge ages. Discernible differences in the removal performance were observed among four different SRTs of 2, 4, 6, and 8 days. High removal efficiency was achieved by continuous circulation of activated sludge over the immobilized mixture culture, which allowed on pH control, addition of nutrients, and removal of paint VOCs (volatile organic compounds). The results also showed that the removal efficiency for a given pollutant depends on the activity of microorganisms based on the SRT. As the SRT increased gradually from 2 to 8 days, the average removal performance decreased. The highest removal rate was achieved at the SRT of 2 days at which the highest OUR (oxygen uptake rate), $6.1mg-O_2/liter-min$ was measured. Biological activity in the recycle microbes decreased to a much lower level, $3.6mg-O_2/liter-min$ at a SRT of 8 days. It is thus believed that young microorganisms were more active and more efficient for the VOCs removal of low concentrations and high flow rates. The apparent correlation of $R^2=0.996$ between the average removal efficiency and the average OUR at each SRTs suggests that VOCs degradation by young cells significantly affected the overall removal efficiency for the tested SRTs.

Application of Silicon Sludge from Semiconductor Manufacturing Process as Pigments and Paints through Titanium Dioxide Coating (반도체 제조공정에서 발생하는 실리콘 슬러지의 이산화티타늄 코팅을 통한 안료 및 도료 소재로의 응용)

  • Yeon-Ryong Chu;Minki Sa;Jiwon Kim;Suk Jekal;Chan-Gyo Kim;Ha-Yeong Kim;Song Lee;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • In this study, silicon sludge generated in semiconductor manufacturing process is recycled and applied as materials for pigments and paints. In detail, metallic impurities are removed from silicon sludge to obtain plate-like silicon sludge powder (SW-sludge), which is then coated with titanium dioxide via sol-gel method (TCS-sludge). SW-sludge and TCS-sludge are dispersed in hydrophilic transparent varnish and sprayed onto glass substrates to observe the possibility for the application as materials for pigments and paints. Notably, the applicability of TCS-sludge-based paint is improved compared to SW-sludge-based paint after the titanium dioxide coating. Moreover, the color of TCS-sludge-based paint turns into white. Accordingly, it is confirmed that the applicability and hydrophilicity are improved by the presence of outer titanium dioxide layer. In this regard, it is expected that the recycled TCS-sludge may be a future material for the application as pigments and paints.

Scientific Analysis of Pigments in 20th Century Paintings for Selected Historical Churches of the Bohol, Philippines

  • Roxas, Gracile Celine;Han, Min Su;Moon, Dong Hyeok
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.507-518
    • /
    • 2017
  • Through a combination of scientific analytical methods, the coloring materials used in $20^{th}$ century paintings in historical churches of Baclayon, Dauis and Loay, which are municipalities in Bohol, Philippines, were studied. Inorganic pigments were identified using SEM-EDS and XRD. Iron-based pigments were commonly found in the paintings, yielding dark yellow and brown colors. Zinc oxide was identified as the white pigment in the ceiling paintings of Dauis Church and Loay Church, while titanium dioxide was detected in the column painting in Baclayon Church. Organic analysis showed the presence of Pigment Yellow 3, a synthetic organic pigment. Paint layers, as well as other components of the samples such as grounds and metal leaves, were examined microscopically. It was observed that different types of grounds were applied on different types of surfaces. Moreover, organic pigments were found in combination with white extender materials. Microscopic examination also revealed alterations in the artworks, such as the overpaint layer found in the samples from Baclayon Church cornice and the imitation metal leaf layers applied over the original gilt surface in the Loay Church retablo.