• Title/Summary/Keyword: organic modifier

Search Result 53, Processing Time 0.028 seconds

Facile Modification of Surface of Silica Particles with Organosilanepolyol and Their Characterization

  • Lee, Joongseok;Han, Joon Soo;Yoo, Bok Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3805-3810
    • /
    • 2013
  • The surface modification of silica particles (SPs) was systemically conducted by the treatment of 0.1-10 wt % phenylsilanetriol (PST) on the basis of SPs used through two step processes: 1) the PST coating of SPs via evaporation under reduced pressure and 2) their thermal condensation leading to Si-O-Si bond formation via heating at $130^{\circ}C$. The evaluation of the modified SPs was conducted by the simple floating test on water and the measurement of the contact angle (CA) of water droplet on the 2-dimensional layer of modified SPs on slide glass. When PST was used about 2 wt % or above on the basis of SPs (about average size: 50 nm) used, the modified SPs were fully floated on the water and all dispersed into upper organic solvent layer after a shaking with the mixture of the water and benzene, indicating that the modified SPs have hydrophobic properties. The modified SPs were characterized by $^{29}Si$ MAS NMR and physicochemical properties including SEM, TEM, BET, adsorption/desorption isotherms, etc. were measured and compared each other in details. This research demonstrates that the organosilanetriol is a good modifier applicable for the surface modification of inorganic oxide particles using a low amount of modifier on the basis of oxide particles used.

Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifier

  • Kwon, Youbin;Shim, Wonbo;Jeon, Seung-Yeol;Youk, Ji-Ho;Yu, Woong-Ryeol
    • Carbon letters
    • /
    • v.20
    • /
    • pp.53-61
    • /
    • 2016
  • The reportedly synergistic effects of carbon nanotubes (CNTs) and graphene hybrids have prompted strong demand for an efficient modifier to enhance their dispersion. Here, we investigated the ability of poly(acrylonitrile) (PAN) to overcome the van der Waals interaction of multi-walled CNTs (MWCNTs) and graphene by employing a simple wrapping process involving ultrasonication and subsequent centrifugation of PAN/MWCNT/graphene solutions. The physical wrapping of MWCNTs and graphene with PAN was investigated for various PAN concentrations, in an attempt to simplify and improve the polymer-wrapping process. Transmission electron microscopy analysis confirmed the wrapping of the MWCNTs and graphene with PAN layers. The interaction between the graphitic structure and the PAN molecules was examined using proton nuclear magnetic resonance, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The obtained results revealed that the cyano groups of the PAN molecules facilitated adhesion of the PAN molecules to the MWCNTs and graphene for polymer wrapping. The resulting enhanced dispersion of MWCNTs and graphene was verified from zeta potential and shelf-life measurements.

Modifier Effects on Supercritical $CO_2$ Extraction Efficiency of Cephalotaxine from Cephalotaxus wilsoniana Leaves

  • Choi, Young-Hae;Kim, Jinwoong;Kim, Jin-Yeol;Joung, Seung-Nam;Yoo, Ki-Pung;Chang, Yuan-Shun
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.163-166
    • /
    • 2000
  • The effects of modifiers such as methanol, water diethylamine in methanol (10 v/v %), and diethylamine in water (10 v/v %) were investigated at three different concentrations (1, 5, and 10 v/v %) of the modifiers in supercritical $CO_2$ (SC-$CO_2$) in order to enhance the supercritical fluid extraction (SFE) efficiency of cephalotaxine from Cephalotaxus wilsoniana Leaves. Among the modifiers employed, methanol basified with diethylamine was found to greatly enhance the extraction efficiency relative to any other modifiers employed. The results suggest that cephalotaxine in plant matrices may be readily changed from SC-$CO_2$-insoluble salt to SC-$CO_2$-soluble free base by basified modifiers. In addition, SC-$CO_2$modified with basified methanol could enhance the extraction efficiency of cephalotaxine more than 30% when compared to the conventional organic solvent extraction.

  • PDF

Modification of Retention Factor of Mononucleotides by Compositions of Buffers and Methanol in RP-HPLC (RP-HPLC에서 Buffer와 메탄올의 조성에 의한 Mononucleotides 체류인자의 조절)

  • 강덕희;이주원;노경호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.452-457
    • /
    • 2000
  • Due to the advantage of RP-HPLC with a variety of compositions of mobile phases, experiments on water-soluble charged species were examined. The samples were mononucleotides (5-CMP, 5-UMP, 5-GMP, 5-IMP, 5-AMP), and the buffers used were sodium phosphate monobasic and acetic acid. The concentrations of buffers ranged from 0.01 to 10 mM, while that of the methanol, an additive to the mobile phase was 5 to 20 vol.%. To predict the retention factor of a sample in terms of its methanol composition (M, vol.%) and buffer(C(sub)B, mM), the following nonlinear equation is suggested, k= $\frac{a+b C_B}{(1+c C_B) M^d}($ where a, b, c, and d were experimentally determined constants. The regression coefficients were above 0.96, and the agreement between experimental and calculated retention factors were relatively good.

  • PDF

Factors Affecting HETP in Preparative Liquid Chromatography (제조용 액체 크로마토그래피에서 HETP에 영향을 미치는 인자)

  • Choi, Du Chan;Choi, Dai-Ki;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.985-991
    • /
    • 1996
  • In chromatographic separation, HETP(height equivalent to a theoretical plate) is a useful quanititive parameter and it is wildely designated as column efficiency. The effects of operating conditions (sample concentration, injection volume, flow rate and mobile phase composition) on HETP were investigated in perparative liquid chromatography (PLC). Water and organic modifier of methanol were used as mobile phase. The sample of thymidine was injected into preparative C18 columns. The system was run by a isocratic mode in 1.5~5.5ml/min. The larger amounts of sample and higher flow rates of mobile phase increased HETP, which means that column efficiencies were worse. As the weight of sample injected into a chromatographic system could be prepared with different concentrations and injection volumes, for the same amount of sample, HETP was approximately increased two times with the ten-fold injection volume. HETP was mainly affected by the resistance of stationary and mobile phase mass transfer in the intraparticle section of packings at higher velocities.

  • PDF

Improved Separation of Organic Explosives by Modified Micellar Electrokinetic Capillary Chromatography (Modified Micellar Electrokinetic Capillary Chromatography에 의한 폭약 성분의 분리능 향상)

  • Park, Sung-Woo;Yang, Young-Geun;Hong, Sungwook;Kim, Taek-Jae
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.325-331
    • /
    • 1997
  • Among various CE separation methods, micellar electrokinetic capillary chromatography(MECC) method using sodium dodecylsulfate(SDS) provides rapid and accurate separation of organic explosive constituents with easy. The running buffer was composed with 2.5 mM borate and 25mM SDS(pH 8.5). Addition of 1M urea and 10% organic modifiers (acetonitrile, methanol and ethanol) improves the resolution of adjacent explosive constituents. When 15 explosive constituents were developed in MECC, most constituents were separated successively while RDX/TNB and DNN/DEP were not, and detection limits of separated compounds are in range of 1 to 4 ppm.

  • PDF

The preparation and characterization of poly(ethylene terephthalate)(PET)/layered silicate nanocomposite (PET 나노복합재료의 제조 및 특성분석)

  • 천상욱;손세범;곽승엽
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.21-24
    • /
    • 2003
  • In general, to enhance physical properties of PET-layered silicate nanocomposites $(P_{et}LSNs)$, it has been well known that the organic modifiers should introduce into gallery regions. However, the organic modifiers in$(P_{et}LSNs)$ may result in thermal decomposition by melt processing at high temperature, and it necessarily lead to deteriorate various physical properties of final products. Therefore, in this study, $(P_{et}LSNs)$ excluding and including organic modifiers were prepared by solution method $(S-P_{et}LSNs_{eom} and S-P_{et}LSNs_{iom})$ and we (focused on the effects of the organic modifiers in $P_{et}$ LSNs with exfoliation structure on the crystallization behaviors, the optical transparency, the thermal stability and the mechanical property. The absence and existence of organic modifiers in $S-P_{et}LSNs_{eom} and S-P_{et}LSNs_{iom}$ were investigated by EA and TGA, and nano-structure of silicate layers in $S-P_{et}LSNs$ was evaluated by using WXRD, SAXS and TEM. $S-P_{et}LSNs_{eom} and S-P_{et}LSNs_{iom}$ were mixed with neat PET as masterbatches by melt method $(M-P_{et}LSNs_{eom} and M-P_{et}LSNs_{iom})$, and also neat PET was mixed with organically modified layered silicates (OLS) by conventional direct melt method $(D-P_{et}LSNs) at 270^{\circ}C$. As results, it was found that $M-P_{et}LSNs_{eom}, M-P_{et}LSNs_{iom}, and D-P_{et}LSN$ showed a exfoliated structure and exhibited faster crystallization rate, better thermal stability and mechanical property than those of neat PET due to the dispersed and detaminated silicate layers in PET matrix. Whereas, considering organic modifiers effect, $M-P_{et}LSNs_{eom} and D-P_{et}LSN$ exhibited slower crystallization rate, poorer optical, thermal and mechanical properties, in comparison to $M-P_{et}LSNs_{eom}> due to the thermal decomposition of organic modifier in $D-P_{et}LSNs$ during melt method.

  • PDF

Retention of Benzoic Acids in RPLC (역상액체크로마토그래피에서 벤조산류의 머무름)

  • Lee, Jae-Seok;Choi, Beom-Suk
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.269-276
    • /
    • 2000
  • Chromatographic retention mechanism of seven benzoic acids in RPLC were investigated. Inorganic salt is pertinent for the measurement of dead time in benzoic acid. Logarthims of capacity factor (log k') and Hildebrand solubility parameter (${\delta}$) showed proportional relationship which imply the hydrophobic effect of the retention mechanism in RPLC. Enthalpies of solute transfer showed inverse proportion to temperature and organic modifier ratio of the mobile phase. It was found that the S value showed positive slope in plot of log k' vs. volume fraction of water in mobile phase. Free energy change increases with increasing organic volume fraction. The hydrophobicity index, ${\varphi}_0$(organic volume fraction) is inversely proportional to column temperature.

  • PDF

Liquid Chromatographic Resolution of Tocainide and Its Analogues on a Doubly Tethered Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid

  • Kim, Hee-Jin;Choi, Hee-Jung;Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.678-682
    • /
    • 2010
  • A doubly tethered chiral stationary phase (CSP) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid were applied to the liquid chromatographic resolution of racemic tocainide, an antiarrhythmic agent, and its analogues. The chiral recognition efficiency of the doubly tethered CSP for tocainide and its analogues was generally greater than that of the corresponding singly tethered CSP especially in terms of the resolution ($R_S$). The resolution of tocainide and its analogues on the doubly tethered CSP were dependent on the content and the type of the organic and acidic modifiers in aqueous mobile phase and the column temperature. Especially, the retention behaviors of analytes on the doubly tethered CSP with the variation of the content of organic modifier in aqueous mobile phase were opposite to those on the corresponding singly tethered CSP and these opposite retention behaviors were rationalized by the lipophilicity differences of the two CSPs.

A Study of the Retention Behavior of Proteins in High-Performance Liquid Chromatography(Ⅰ): The Effect of Solvent and Temperature on Retention Behavior of Proteins in Reversed-Phase Chromatography

  • Dai Woon Lee;Byung Yun Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.510-514
    • /
    • 1993
  • The retention behavior of proteins was investigated by using reversed-phase chromatography (RPC), comparing to the retention behavior of small molecules in RPC. The evaluation was carried out on a SynChropak RP-P($C_{18}$) column with 0.1% aq. TFA-organic solvent modifier such as acetonitrile, isopropanol, and ethanol. The Z value (the number of solvent molecules required to displace the solute from the surface) was a general index for the characterization of protein retention as a function of organic concentration over a range of temperature between 5 and 70$^{\circ}C$. Van't Hoff plots provided the basis for evaluating the enthalpic and entropic changes associated with the interaction between protein and the stationary phase. Z values did not change significantly at the range of temperature showing the consistent ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ values. From these investigation, it was concluded that the retention behavior of proteins in RPC was able to be predicted by the retention parameters applied to small molecules. Furthermore, myoglobin and hemoglobin in RPC as stated above showed a similar retention behavior regardless of their molecular weights.