Factors Affecting HETP in Preparative Liquid Chromatography

제조용 액체 크로마토그래피에서 HETP에 영향을 미치는 인자

  • Choi, Du Chan (Dept. of Chem. Eng., Inha university) ;
  • Choi, Dai-Ki (CFC Alternatives Technology Center, Korea Institute of Science and Technology) ;
  • Row, Kyung Ho (Dept. of Chem. Eng., Inha university)
  • 최두찬 (인하대학교 화학공학과) ;
  • 최대기 (한국과학기술연구원, CFC 대체기술센터) ;
  • 노경호 (인하대학교 화학공학과)
  • Received : 1996.07.16
  • Accepted : 1996.09.09
  • Published : 1996.10.10

Abstract

In chromatographic separation, HETP(height equivalent to a theoretical plate) is a useful quanititive parameter and it is wildely designated as column efficiency. The effects of operating conditions (sample concentration, injection volume, flow rate and mobile phase composition) on HETP were investigated in perparative liquid chromatography (PLC). Water and organic modifier of methanol were used as mobile phase. The sample of thymidine was injected into preparative C18 columns. The system was run by a isocratic mode in 1.5~5.5ml/min. The larger amounts of sample and higher flow rates of mobile phase increased HETP, which means that column efficiencies were worse. As the weight of sample injected into a chromatographic system could be prepared with different concentrations and injection volumes, for the same amount of sample, HETP was approximately increased two times with the ten-fold injection volume. HETP was mainly affected by the resistance of stationary and mobile phase mass transfer in the intraparticle section of packings at higher velocities.

HETP(Height Equivalent to a Theoretical Plate)는 크로마토그래피 공정에서 관의 효율을 나타내는 정량적 인자이다. 본 연구에서는 시료의 농도와 주입량, 이동상의 유속과 조성이 제조용 액체 크로마토그래피의 HETP에 미치는 영향을 고찰하였다. 시료는 thymidine이고 이동상은 1.5~5.5ml/min의 유속에서 일정용매조성법으로 물과 organic modifier로서 메탄올을 사용하였으며 제조용 크로마토그래피 column은 길이가 500mm, 내경이 9.8mm이다. 시료의 농도와 주입부피 및 유속이 증가함에 따라 HETP는 거의 선형적으로 증가하여 관의 효율이 감소하였다. 시료 주입부피의 영향은 관의 효율에 매우 중요하게 작용하여 동일한 주입량에 대하여 주입부피가 10배로 증가함에 따라 HETP는 약 2배 정도로 커졌다. 이동상의 유속이 증가함에 따라서 HETP는 주로 이동상과 고정상의 물질전달저항에 의해서 증가하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. 화학공업과 기술 v.8 노경호;최대기;황경업;이윤용
  2. J. Chromatogr. v.185 G. Guinchon
  3. J. Chrom. Sci. v.15 J. H. Knox
  4. J. Chromatogr. v.595 L. A. Jones;J. J. Glennon;W. H. Reiss
  5. Anal. Chem. v.65 Q. Ching Wang;F. Svec;J. J. Frechet
  6. J. Chromatogr. v.687 F. Charton;M. Baily;G. Guinchon
  7. Dynamics of Chromatography J. C. Giddings
  8. J. Chrom. Sci. v.13 E. Crushka;L. R. Snyder;J. H. Knox
  9. J. Chromatogr. v.149 C. Horvath;H. J. Lin
  10. J. Chrom. Sci. v.15 J. H. Knox
  11. Anal. Chem. v.55 W. E. Barder;P. W. Carr
  12. Anal. Chem. v.60 G. Guinchon;S. Golshan-Shirazi;A. Jaulmes
  13. Anal. Chem. v.55 M. Martin;G. Guinchon
  14. Anal. Chem. v.63 A. Berthold
  15. Chromatographia v.32 N. S. Wu;G. H. Gu
  16. Chromatographia v.31 C. P. Cai;N. S. Wu
  17. J. Chrom. Sci. v.33 Y. Guillaume;C. Guinchard
  18. J. Chrom. Sci. v.33 H. P. Lettner;O. Kaltenburnner;A. Jungbauer
  19. J. Chrom. Sci. v.33 J. Olive;J. O. Grimalt
  20. J. Liquid Chromatogr. v.18 Y. W. Lee;K. H. Row;M. S. So;I. A. Pounina;A. V. Larin
  21. J. Liquid Chromatogr. v.18 J. D. Kim;K. H. Row;M. S. So;I. A. Pounina;A. V. Larin
  22. J. Chem. Sci. v.15 C. Horvath;W. R. Melander
  23. J. Phys. Chem. v.59 L. Lapidus;N. R. Amundson
  24. Chem. Eng. Sci. v.5 van Deemter;J. J. Zuiderweh;A. Klinkinberg