• Title/Summary/Keyword: organic medium

Search Result 757, Processing Time 0.026 seconds

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

Influencing Factors on NOM Removal using Blended Coagulants (혼합응집제에 의한 자연유기물질 제거에 미치는 영향 인자)

  • 명복태;우달식;최종헌;문철훈;이윤진;조영태;조관형;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.96-103
    • /
    • 2001
  • This study was carried out to investigate the major factors for the removal of NOMs (Natural Organic Matters) by alum ferric chloride and blended coagulants that consisted of alum and ferric chloride. Investigated factors were pH, the dosage of coagulant, alkalinity, hardness and bloc strength. The particle size contained in the test water came from the Han River was also measured. DOC(Dissolved Organic Carbon) removal at pH 6 was two to three times higher than at pH 8.5. The blended coagulant showed 9 to 10 percent higher DOC removal efficiency and 2 to 4 percent higher turbidity under the same condition. Alkalinity consumption of alum, ferric chloride and blended coagulant was 81%, 90% and 86% of theoretical value, respectively. The limit concentration of alkalinity to avoid pin floe was 10 mg $CaCO_3/L$ when alum was used. Hardness had no apparent effect on coagulation. The residual turbidity and $UV_{254}$ showed a tendency of increasing with floc strength($sec^{-1}$) increase. The order of floe strength was the following; alum >blended coagulant > ferric chloride. The particle counter test showed 89 percent of the small particle size(SPS, $1~5{\;}{\mu}textrm{m}$) and 11 percent of the medium to large particle size(M.LPS, $5~125{\;}{\mu}textrm{m}$). At PH7.85, the particle removal efficiencies of SPS($1~5{\;}{\mu}textrm{m}$) and M.LPS($5~125{\;}{\mu}textrm{m}$) in the coagulation process were 81% and 95%, respectively.

  • PDF

Effect of Earthworm Cast Mixtures on the Growth of Pepper(Capsicum annuum L.) Seedlings (지렁이분립의 혼합상토가 고추유묘의 생육에 미치는 영향)

  • 전하준;조익환
    • Korean Journal of Organic Agriculture
    • /
    • v.4 no.1
    • /
    • pp.75-84
    • /
    • 1995
  • This study was carried out to find the effects of the mixtures of earthworm cast, peatmoss, and vermiculite as a vegetable plant growth medium on the growth pepper seedlings. The mixed ratios of earthworm cast-peatmoss-vermiculite were 40-20-40, 40-30-30, 40-40-40, 50-20-30, 50-30-20, 60-10-30, 60-20-20 and 60-30-10%. The results of the study are as follows: 1, There was a significant difference of plant length, leaf area, shoot dry weight, root dry weight and biological yield per plant for growth stages and mixed ratios(p<0.05). But there was no significant interactions for both of them. 2. The nursery soil with earthworm cast was generally higher than the control treatment in shoot dry weight, root dry weight adn biological yield per plant. The shoot dry weight and biological yield per plant were high in the treatment including 60% of the earthworm cast to the 3rd week and in the one including 50% from the 4th week. But in root dry weight, the treatment including 40% of it was higher than treatment of the others. 3. The shoot dry weight per plant in treatments consisting both of 40% of earthworm, 40% of peatmoss and 20% of vermiculite and of 60%, 10% and 30% was more significant than that in the control treatment(p<0.05). 4. The average relative growth rates of shoot dry weight, root dry weight and biological yield for all treatments were higher than the ratio of control treatment except the ration of the treatment consisting of 60% of earthworm, 20% of peatmoss and 20% of vermiculite.

  • PDF

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine

  • Nguyen, Thanh Nhan;Nguyen, Hoang Phuc;Kim, Tae-Ho;Lee, Soo Wohn
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.

Efficient Target-Site Assay of Chemicals for Melanin Biosynthesis Inhibition of Magnaporthe grisea

  • Kim, Jin-Cheol;Son, Mi-Jung;Kim, Heung-Tae;Park, Gyung-Ja;Hahn, Hoh-Gyu;Nam, Kee-Dal;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.125-129
    • /
    • 2000
  • A rapid and efficient assay to determine melanin biosynthesis inhibition of Magnaporthe grisea, a causal agent of the rice blast, by chemicals was developed. Wells in 24-well plates were loaded with spore suspension of the fungus and three known melanin biosynthesis inhibitors of KC10017, tricyclazole, and carpropamid. Subsequent color changes of mycelia and culture media in the wells were observed 7 days after incubation. The wells treated with KC10017 (an inhibitor of polyketide synthesis step and/or pentaketide cyclization step) became colorless, whereas tricyclazole (an inhibitor of 1, 3, 8-trihydroxynaphthalene reductase) or carpropamid (an inhibitor of scytalone dehydratase)-treated wells exhibited red color. They did not show any inhibitory effect on fungal growth. The inhibition of reaction steps prior to 1, 3, 6, 8-tetrahydroxynaphthalene formation was easily determined by colorless medium and mycelia. However, it was impossible to distinguish between inhibition of reduction steps and inhibition of dehydration steps by colors of the cultures. It was accomplished through HPLC analysis of the melanin biosynthesis-involving pentaketide metabolites accumulated by the inhibitors. Through screening of a number of synthetic chemicals using the in vitro assay, we could find a novel chemical group of melanin biosynthesis inhibitor.

  • PDF

Surface Characteristics of Fouling Resistant Low-Pressure RO Membranes (상업용 내오염성 저압 RO막의 표면 특성 분석)

  • Hong, Seungkwan;Taylor, James;Norberg, David;Lee, Jinwoo;Park, Chanhyuk;Kim, Hana
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, five commercially available fouling resistant low-pressure RO membranes were investigated for the treatment of seasonally brackish surface water with high organic content (${\approx}24mg/L$). The membranes investigated are LFC-1 (Hydranautics), X20 (Trisep), BW30FR1 (FilmTec), SG (Osmonics), and BE-FR (Saehan). The results of surface characterization revealed that each of these membranes has one or two unique surface characteristics to minimize the adherence of the fouling materials to the membrane. Specifically, the LFC1 membrane features a neutral or low negative surface to minimize electrostatic interactions with charged foulants. The X20, on the other hand, shows a highly negatively charged surface, and thus, is expected to perform well with feed waters containing negatively charged organics and colloids. The BW30FR1 exhibits a relatively neutral and hydrophilic surface, which could be beneficial for lessening organic and/or biofouling. The SG membrane has a smooth surface that makes it quite resistant to fouling, particularly for colloidal deposition. Lastly, BE-FR membrane demonstrated a medium surface charge and a slightly higher hydrophobicity. In the pilot study, all of the four membranes experienced a gradual increase in MTC (water mass transfer coefficient or specific flux) over time, indicating no fouling occurred during the pilot study. The deterioration of permeate water quality such as TDS was also observed over time, suggesting that the integrity of the membranes was compromised by the monochloramine used for biofouling control.

Basic Studies for Increment of Germanium Contents in Angelica keiskei KOIDZ., and A. acutiloba KITAGAWA (명일엽(明日葉)과 일당귀(日當歸)의 Germanium 함량(含量) 증대(增大)를 위한 기초연구(基礎硏究))

  • Lee, Man-Sang;Kim, Seong-Jo;Baek, Seung-Hwa;Namkoong, Seung-Bak
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 1995
  • This study was carried out to examine the germanium contents of Angelica keiskei Koidz. and A. acutiloba Kitagawa and to intend to increase its contents while those leaf explants were culturing on MS medium supplemented with organic and inorganic germanium. Ge content of Agelica keiskei Koidz. was 2.1 times higher than that of A. acutiloba Kitagawa. Digestion was done quickly at high temperature, but Ge content was decreased. Callus formation of A. acutiloba Kitagawa was better than that of A. keiskei Koidz. Callus formation of both plants was good in order of pH 5.7, pH 5.4, and pH 6.0. But shoots from callus were formed frequently in A. keiskei Koidz., especially at pH 5.7. Callus formation of both plants was good up to 5 ppm of inorganic ($germanium(GeO_2),$ retarded at 10 ppm, and rarely formed at 100 ppm, but was good up to 10ppm of organic germanium retarded at 50 ppm and formed some-what even at 100 ppm.

  • PDF

Production of Hydrogen and Volatile Fatty Acid by Enterobacter sp. T4384 Using Organic Waste Materials

  • Kim, Byung-Chun;Deshpande, Tushar R.;Chun, Jongsik;Yi, Sung Chul;Kim, Hyunook;Um, Youngsoon;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.189-194
    • /
    • 2013
  • In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of $10-45^{\circ}C$ and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l $H_2$, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l $H_2$, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l $H_2$, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l $H_2$, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l $H_2$, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs (폴리(페닐렌 설파이드)로 기능화된 다중벽 탄소나노튜브의 제조와 특성분석)

  • Hong, Sung Yeon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.791-800
    • /
    • 2014
  • 4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.

Characterization of Itraconazole Semisolid Dosage Forms Prepared by Hot Melt Technique

  • Shim, Sang-Young;Ji, Chang-Won;Sah, Hong-Kee;Park, Eun-Seok;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • The objective of this study was to formulate itraconazole semisolid dosage forms and characterize their physicochemical properties. Itraconazole and excipients such as polysorbate 80, fatty acids, fatty alcohols, oils and organic acids were melted at $160^{\circ}C$. The fused solution was then cooled immediately at $-10^{\circ}C$ to make wax-like semisolid preparations. Their physicochemical attributes were first characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectrometry. The solubility of itraconazole in semisolid preparations and their dispersability in the simulated gastric fluid were also determined. Our semisolid preparations did not show any distinct endothermic peak of a crystalline form of itraconazole around $160-163^{\circ}C$. This suggested that it was changed into amorphous one, when it was formulated into semisolid preparations. In addition, the distinctive functional peaks and chemical shifts of itraconazole were well retained after processing into semisolid preparations. It could be inferred from the data that itraconazole was stable during incorporation into semisolid preparations by the hot melt technique. In particular, itraconazole semisolid preparations composed of polysorbate 80, fatty acids and organic acids showed good solubility and dissolution when dispersed in an aqueous medium. It was anticipated that the semisolid dosage forms would be industrially applicable to improving the bioavailability of poorly water-soluble drugs.