• Title/Summary/Keyword: organic matter (OM)

Search Result 322, Processing Time 0.025 seconds

Air-Soil Partitioning of PCBs in Rural Area

  • Yeo, Hyun-Gu;Park, Min-Kyu;Chun, Man-Young;Young, Sun-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.1-9
    • /
    • 2003
  • The soil concentrations of polychlorinated biphenyls (PCBs) were measured at 12 sites in Ansung, Kyonggi province, Korea. Correlation coefficient (r) between total PCBs and organic matter content (OM) was significant (r=0.562, p< 0.05). It suggests that organic matter may be a key factor of soil absorption of PCBs. The PCB concentrations of low chlorinated congeners with high vapor pressure were relatively abundant in air but high chlorinated congeners with low vapor pressure were mainly dominated by soil. The results indicated the influence of physicochemical properties of PCBs such as vapor pressure, octanol - air partition coefficient ( $K_{OA}$ ). The calculated soil/air fugacity quotients suggested that the soil may be a source of heavier molecular PCBs (>penta-CBs) to the atmosphere, where lighter molecular PCBs appear to be affected by a movement from air to soil, especially tetra-CBs. Therefore, PCB homologs with low vapor pressure might have been influenced by revolatilization from soil.

The Prediction of Spacial Variability for Soil Information in Paddy Field (토양정보별 포장내 공간변이 예측에 관한 연구)

  • 정인규;성제훈;이충근;김상철;이용범
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.65-70
    • /
    • 2004
  • This study was carried out to verify and predict the soil informations such as the contents of organic matter(OM) and Mg and pH of the soil. The predictability of spacial variation in the paddy field was examined by analyzing the various soil information. The prediction models for the OM pH, and Mg, were developed using inverse distance weighted (IDW), triangulated irregular network(TIN) and Kriging model. The determination of coefficients of linear and spherical Kriging models were 0.756 and 0.578, respectively, and were very low in comparison with other soil information. For IDW and TIN model, the determination of coefficients were 1.000 and hence the performance of the models was found to be excellent. The developed models were validated using unknown soil sample obtained In 2000 and 2001. From the analysis of relationship between the measured pH and predicted 0.9353. For prediction of Mg, the determination of coefficient is more than 0.8. Since the determination of coefficients of developed models for OM were relatively low, it may be difficult to predict the content of OM using the developed models. For further study, the additional works to enhance the performance of the prediction models for soil information are required.

Influence on Composting of Waste Mushroom Bed from Agaricus bisporus by using Mixed Organic Materials (혼용자재 특성이 양송이 폐상배지를 이용한 퇴비제조에 미치는 영향)

  • Kyung, Ki-Cheon;Lee, Hee-Duk;Jung, Young-Pil;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.335-340
    • /
    • 2010
  • This study was conducted to select organic materials (OM) and nitrogen sources in composting of waste mushroom bed from Agaricus bisporus. We examined physio-chemical properties of the organic materials and the mixture ratio for preparing the wasted mushroom bed (M) compost. The carbon content of sawdust was higher than those of rice straw (R) as OM source and the nitrogen content was high in the order of fowl manure (F)>> pig manure (P)> cow manure (C). The compost was prepared to maintain the criteria of above 25% organic matter and then the change of their ingredients was estimated during the process of fermentation. The temperature of waste mushroom bed+pig manure+rice straw (MRP) treatment was varied fast throughout fermentation, on the other hand the temperature of waste mushroom bed+pig manure+sawdust (MSP) treatment was steadily elevated to the middle of composting. The pH of the compost was somewhat high to pH 8.5~9.0 at the early stage, but decreased to 7.5 at the end stage of composting. The content of OM after fermentation was decreased to the level of 19~21% in rice straw, but the sawdust treatment maintained 25~27% organic matter. The waste mushroom bed+fowl manure+rice straw (MRF) treatment, which contains 26.2% organic matter and 0.68% nitrogen, was the highest among them. The volume of compost was reduced to 50% by using rice straw as organic matter, but reduced to 30% by using the sawdust. The contents of heavy metal in the compost were suitable within the legal criteria. The number of microorganisms were higher in the rice straw than those in the sawdust. It was high in the order of fowl manure> pig manure> cow manure. The major groups consisted of aerobic bacteria, gram negative bacteria and Bacillus sp. and their populations after fermentation were increased to $1{\times}10^1{\sim}1{\times}10^2\;cfu\;g^{-1}$ rather than those before fermentation. Therefore we concluded that the waste mushroom bed+fowl manure+sawdust (MSF 3:9:1 v/v/v) treatment was suitable combination for high organic matter and nitrogen source, and the periods of composting were 50~60 days.

The Requirement of Ruminal Degradable Protein for Non-Structural Carbohydrate-Fermenting Microbes and Its Reaction with Dilution Rate in Continuous Culture

  • Meng, Q.X.;Xia, Z.G.;Kerley, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1399-1406
    • /
    • 2000
  • A continuous culture study was conducted to determine the impact of ruminal degradable soy protein (S-RDP) level and dilution rate (D) on growth of ruminal non-structural carbohydrate-fermenting microbes. Corn starch, urea and isolated soy protein (ISP) were used to formulate three diets with S-RDP levels of 0, 35 and 70% of total dietary CP. Two Ds were 0.03 and $0.06h^{-1}$ of the fermenter volume in a single-effluent continuous culture system. As S-RDP levels increased, digestibilities of dietary dry matter (DM), organic matter (OM) and crude protein (CP) linearly (p=0.001) decreased, whereas digestion of dietary starch linearly (p=0.001) increased. Increasing D from 0.03 to $0.06h^{-1}$ resulted in decreased digestibilities of dietary DM and OM, but had no effect on digestibilities of dietary starch (p=0.77) and CP (p=0.103). Fermenter pH, the concentration of volatile fatty acids (VFA) and daily VFA production were unaffected (p=0.159-0.517) by S-RDP levels. Molar percentages of acetate, propionate and butyrate were greatly affected by S-RDP levels (p=0.016-0.091), but unaffected by D (p=0.331-0.442). With increasing S-RDP levels and D, daily bacterial counts, daily microbial N production (DMNP) and microbial efficiency (MOEFF; grams of microbial N produced per kilogram of OM truly digested) were enhanced (p=0.001). The increased microbial efficiency with increasing S-RDP levels is probably the result of peptides or amino acids that served as a stimulus for optimal protein synthesis. The quantity of ruminal degradable protein from soy proteins required for optimum protein synthesis of non-structural carbohydrate-fermenting microbes appears to be equivalent to 9.5% of dietary fermented OM.

Roughage Energy and Degradability Estimation with Aspergillus oryzae Inclusion Using Daisy In vitro Fermentation

  • Chen, C.R.;Yu, B.;Chiou, P.W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • The aim of this study was to predict the energy value and dynamic degradation of roughage in Taiwan using the $Daisy^{(R)}$. in vitro fermentation method to provide information on one of the very important nutrients for ration formulation. The second objective was to study the effects of Aspergillus oryzae (AFE) inclusion on nutrient utilization. Three ruminal fistulated dry dairy cows were used for rumen fluid and fifteen conventional forages used in dairy cattle were collected around this island. The degradability of these feedstuffs with and without AFE ($Amaferm^{(R)}$.) treatment was measured using the $Daisy^{(R)}$. in vitro method. The roughage energy values, including TDN and NEL, were calculated according to Robinson (2000). Results from the 30 h in vitro neutral detergent fiber (NDF) degradability and predicted energy evaluations showed that alfalfa (among the forages) contained the highest degradability and energy values, Bermuda straw having the lowest. Peanut vines and corn silage contained higher energy values and the lowest value found in Pangola and Napier grasses among the locally produced forages. Pangola and Napier grasses had lower values than most imported forages except Bermuda straw. Among the by-products, wheat middling contained the highest NDF degradability, while rice bran contained the richest energy value due to its high oil content. From the dynamic dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) degradation, corn silage contained the highest effective degradation among the local forages; wheat middling (among the by-products) degraded the fastest in DM, OM, ADF and NDF and showed the highest effective degradability. AFE inclusion was inconsistent among the forages. Alfalfa hay showed significantly increased 30 h NDF degradability and energy values, Pangola hay, Napier grass and brewer's grains showed decreased degradability and energy values. AFE inclusion increased the DM, OM and NDF degradation rate in most forage, but only increased the DM degradation rate in sorghum distiller's grains, the OM degradation rate in bean curd pomace and the NDF and ADF degradation rates in soy pomace (among the by-products).

Effect of different harvesting times on the nutritive value and fermentation characteristics of late and early-maturing forage oats by rumen microbes

  • Zhang, Yan;Lee, Ye Hyun;Nogoy, Kim Margarette;Choi, Chang Weon;Kim, Do Hyung;Li, Xiang Zi;Choi, Seong Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.125-135
    • /
    • 2019
  • Late-maturing Dark Horse, and early-maturing High Speed oat varieties were seeded on March 3, 2016 and harvested on three periods: May 31, June 10, and June 20 coded as early, mid, and late-harvest, respectively. Dried and ground samples were subjected to chemical analysis to determine nutritional values such as crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE), organic matter (OM), and total digestible nutrient (TDN). Effective degradability (ED) of nutrients and fermentation characteristics including volatile fatty acid (VFA) composition, pH, gas production, and ammonia-N concentration were evaluated through an in vitro digestion method. Varieties of oat hays showed significant difference in terms of nutritional value, ED, and fermentation characteristics. Dark Horse showed higher CP and OM, and lower EE contents than High Speed. Dark Horse also showed higher EDDM (dry matter), NDF, ADF, and OM than High Speed, and although High Speed showed higher pH and ammonia-N, it had lower gas and total VFA production than Dark Horse. However, in terms of harvest period, significant difference was only observed in Dark Horse where early-harvest increased the CP, and late-harvest increased the NDF and OM contents. In addition, early-harvest of Dark Horse increased the EDDM and EDNDF of the forage. Therefore, early-harvest of late-maturing Dark Horse would give better nutrient efficiency than High Speed. Allowing Dark Horse to advance in maturity would decrease its nutrient productivity and efficiency.

Changes of Physicochemical Parameters During the Aerobic Composting Process of Swine Manure (돈부의 호기성 퇴비화 단계별 물리.화학적 성상 변화)

  • 김태일;정광화;최기춘;류병희;곽정훈;전병수;박치호;김형호;한정대
    • Journal of Animal Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 1997
  • This study was conducted to investigate the physicochemical changes during the aerobic composting of swine manure mixed with bulking agent, sawdust(v/v, 1:1), in a full-scale composting plant using rectangular escalator-aginated bed composting system. Physical and chemical properties were analyzed on the samples which were collected at 5, 15, and 25 day of composting, curing and final step. The results of this study were summarized as follows; 1. Moisture and K2O content, and pH of final step were higher than those of 5th day of composting (p<0.05). 2. Ammonium nitrogen, total organic corbon and organic matter content, and electrical conductivity(EC) were significantly decreased (p<0.05) but nitrate nitrogen, ash and P2O5 content increased(p<0.05) throughout the aerobic composting process. 3. Total organic carbon per total nitrogen(C/N) and total organic matter per total nitrogen(OM/N) ratio were significantly decreased throughout the aerobic composting process(p<0.05). 4. Physical and chemical properties of swine manure were varied by aerobic fermentation using rectangular escalor-aginated bed composting system.

Comparison of soil nutrients, pH and electrical conductivity among fish ponds of different ages in Noakhali, Bangladesh

  • Tapader, Md. Morshed Alam;Hasan, Mehedi Mahmudul;Sarker, Bhakta Supratim;Rana, Md. Enayet Ullah;Bhowmik, Shuva
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2017
  • An experiment was conducted to detect aquaculture pond bottom soil nutrients, pH and electrical conductivity with a view to optimize production and to incorporate the scientific method of fish nursing, rearing and culturing at Noakhali district in Bangladesh. The soil samples were collected from the recently dug ponds (1 - 5 years) and older ponds (> 5 years). Samples were taken from five different spots in a Z shape from each pond and were mixed to get a composite sample. The composite samples from the ponds were collected in polyethylene bags and shipped to the laboratory for analysis. The soil samples were analyzed with respect to pH, electrical conductivity (EC), organic carbon (OC), organic matter (OM), nitrogen (N), phosphorous (P), potassium (K) and sulfur (S). The average value of pH, OC, OM, N, P, K and S were $7.43{\pm}0.40$, $2.21{\pm}1.43%$, $1.47{\pm}0.53%$, $2.52{\pm}0.94{\mu}g\;g^{-1}$, $0.126{\pm}0.047{\mu}g\;g^{-1}$, $3.84{\pm}1.77{\mu}g\;g^{-1}$, $0.191{\pm}0.106{\mu}g\;g^{-1}$ and $306.72{\pm}222.05{\mu}g\;g^{-1}$ respectively, in Noakhali. The average EC, OC, OM, N and P contents were found to be higher in Subornachar than those in Sonapur. On the other hand pH, K and S were found to be higher in Sonapur than the values of Subornachar. The pH, EC, OC, OM, N and S contents were found to be higher in new ponds than old ponds whereas P and K contents were found to be higher in old pond than in new pond.

Classification of Volcanic Ash Soils and contribution of Organic Matter and Clay to Cation Exchange Capacity (화산회토(火山灰土) 분류(分類) 및 CEC에 대(對)한 유기물(有機物)과 점토(粘土)의 기여도(寄與度))

  • Park, Chang-Seo;Kim, Lee-Yul;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.161-168
    • /
    • 1985
  • The 38 typical profiles representing volcanic ash soils (VAS) in Korea were subjected to multiple regression analysis to determine the relative contribution of organic matter (OM) and clay content to total cation-exchange capacity (CEC). This study, also, was examined the soil characteristics of VAS. VAS in Korea could be classified into 3 Orders, 5 Suborders, 8 Great groups, 15 Subgroups, 23 Families, and 38 Series. Total area of VAS was 139, 162ha and the most of them occured in Jeju Island. Simple correlation coefficients showed significance relations at OM-CEC and clay-CEC in top-soil of VAS. The partial regression coefficients indicated that CEC for each gram of OM as calculated to be 0.46 and 0.40 me per of topsoils for the black volcanic ash soils (BVAS) and the very dark brown volcanic ash soils (VDBVAS), respectively. The clay contributions of topsoils for BVAD and VDBVAS were 0.11 and 0.19 me. The standard partial regression coefficients appeared that OM content of topsoil for BVAS and VDBVAS was 2.97 and 1.23 times as important as clay content in predicting CEC.

  • PDF

The Effect of Different Sources of Urease Enzyme on the Nutritive Value of Wheat Straw Treated with Urea as a Source of Ammonia

  • Khan, M.J.;Scaife, J.R.;Hovell, F.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1063-1069
    • /
    • 1999
  • Wheat straw samples (3-4 cm) were sprayed with solutions of urea (U) alone or with a dry addition of garden soil (GS), midden soil (MS), soya bean meal (SM) or jack bean meal (JM) as crude urease sources and with a pure urease (UR) enzyme. Each of the urease sources was included at two levels: 30 and 60 g/kg except pure urease, which was added at a level of 2.5 & 5.0 g/kg treated straw dry matter. Untreated straw without urease source was used as a control. After treatment, samples were sealed in polythene bags and stored for 2, 7, 14, 21 and 35 days at $19{^{\circ}C}$. The urease sources, their levels and treatment time produced significant effects on ammonia production (p<0.01). The addition of urease offered more flexibility in hydrolyzing urea in the shortest possible time. Incorporation of soya bean and jack bean meal was effective in reducing the modified acid detergent fiber (MADF) content of straw and the same time increasing organic matter (OM) digestibility. Overall effect, addition of soya bean to urea at a ratio of 1:1 appeared to be the most satisfactory urease source for the treatment of urea and wheat straw.