• 제목/요약/키워드: organic matrix composites

검색결과 67건 처리시간 0.025초

유기/무기 복합 절연재료의 전기적 특성 (Electrical Properties of Organic/lnorganic Hybrid Composites for Insulation materials)

  • 깅상철;김현석;옥정빈;안명진;박도현;이건주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2001
  • In this work, the surface of inorganic fillers were modified with some functional groups such as stearic acid, aliphatic long chain, vinylsilane and aminosilane to control the interaction between inorganic fillers and polymer matrix. Ethylene-vinyl acetate copolymers (EVA) with various amount of vinyl-acetate content and copolyether-ester elastomer were used as polymer matrix. The addition of inorganic fillers increases flame retardancy, but results in steep drop of electrical and mechanical properties, which may be caused by the defect in the interface between organic/inorganic hybrid composites. The hybrid composites are found to show better mechanical properties and higher volume resistivities as inorganic fillers are well dispersed and have good adhesion with polymer matrix. Also, the most effective type of functional group coated on fillers depends on the chemical structure of polymer.

  • PDF

금속기복합재료의 바인더 첨가제에 따른 강도 특성 (The Strength Properties of Metal Matrix Composites by Binder Additives)

  • 박원조;허선철
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1051-1057
    • /
    • 2003
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as SiO$_2$, Al$_2$O$_3$, and TiO$_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated TiO$_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.

금속기복합재료의 바인더 첨가제에 따른 강도 특성 (The Strength Properties of Metal Matrix Composites by Binder Additives)

  • 박원조;이광영;허선철;최용범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.198-203
    • /
    • 2001
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as $SiO_2,\;Al_2O_3$, and $TiO_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated $TiO_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.

  • PDF

Layered Silicate-Polymer Nanocomposites

  • Jeong, Han-Mo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.18-18
    • /
    • 2003
  • Natural clays are composed of oxide layers whose thickness is about 1nm and cations existing between the layers. A number of these layers makes primary particles with a height of about 8∼10nm and these primary particles make aggregates with a size of about 0.1∼10$\mu\textrm{m}$. When layered silicate was made to be organophilic, by exchanging the interlayer cations with organic cationic molecules, the matrix polymer can penetrate between the layers to give a nanocomposite, where 1nm-scal clay layers exist separately in a continuous polymer matrix. These nanostructured hybrid organic-inorganic composites have attracted the great interest of researchers over the last 10 years. They exhibit improved performance properties compared with conventional composites, because their unique phase morphology by layer intercalation or exfoliation maximizes interfacial contact between the organic and inorganic phases and enhances interfacial properties. Since the advent of nylon-6/montmorillonite nanocomposite developed by Toyota Motor Co., the studies on layered silicate-polymer nanocomposites have been successfully extended to other polymer systems. They greatly improved the thermal, mechanical, barrier, and even the flame-retardant properties of the polymers.

  • PDF

Sol-Gel법을 이용한 (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass 복합체의 합성과 그 특성 (Synthesis and Their Properties of (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass Composites by Sol-Gel Process)

  • 이병우;김병호;윤영권;한원택
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.993-1001
    • /
    • 1997
  • The (0.8PPV+0.2DMPPV) copolymer and silica/borosilicate composites were synthesized by sol-gel process. The organic-inorganic hybrid solution was prepared by using of (0.8PPV+0.2DMPPV) copolymer precursor solution as a raw material for organic components and TEOS and TMB for glass components. Then by drying the solution in vacuum at 5$0^{\circ}C$ for 7days and subsequent heat treatment in vacuum at 15$0^{\circ}C$~30$0^{\circ}C$ for 2h~72h with heating rate of 0.2$^{\circ}C$/min and 1.8$^{\circ}C$/min, the organic-inorganic composites were synthesized. Microstructural evolution of the composites was characterized by DSC, IR spectrocopy, UV/VIS spectroscopy, and TEM. Elimination of the polymer precursor and degradation of the polymer were observed by DSC and Si-O and trans C=C absorption peaks were identified by IR spectra. The polymer was found to be successfully incorporated into the glass matrix and it was confirmed by the absorption peaks from the polymer in the UV/VIS spectra and the TEM results. The absorption peak of the composites was found to shift toward short wavelength side compared to that of the pure polymer and the amount of the blue shift increased with increasing the heat treatment temperature and heat treatment time and with decreasing the heating rate.

  • PDF

Electrical Properties of Organic/Inorganic Hybrid Composites for Insulation Materials

  • Kim, Sang-Cheol;Ok, Jeong-Bin;Aho, Myeong-Jin;Park, Do-Hyun;Lee, Gun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.9-13
    • /
    • 2002
  • In this work, the surface of inorganic fillers were modified with some functional groups such as stearic acid, aliphatic long chain, vinylsilane and aminosilane to control the interaction between inorganic fillers and polymer matrix. Ethylene-vinyl acetate copolymers (EVA) with various amount of vinyl-acetate and copolyether-ester elastomer were used as polymer matrix. The addition of inorganic fillers increases flame retardancy, but results in steep drop of electrical and mechanical properties, which may be caused by the defects in the interface between organic/inorganic hybrid composites. The hybrid composites are found to show better mechanical properties and higher volume resistivities as inorganic fillers are well dispersed and have good adhesion with polymer matrix. Also, the most effective type of functional group coated on fillers depends on the chemical structure of polymer.

Investigation of Co-poly-para-aramid Fiber Dispersion in Chloroprene Rubber Matrix and Improvement of Dispersibility Through Fiber Surface Modification

  • Garam Park;Hyeri Kim;Gayeon Jeong;Dohyeong Kim;Seungchan Noh;Dajeong Gwon;Myung Chan Choi;Jaseung Koo
    • Elastomers and Composites
    • /
    • 제57권4호
    • /
    • pp.175-180
    • /
    • 2022
  • To produce a co-poly-para-aramid fiber (AF, Technora®)-reinforced neoprene rubber composite, dispersion of AF in a neoprene matrix is investigated. The AF is then surface-modified by mercerization and acetone, plasma, and silane treatments to improve dispersibility. Finally, an internal mixer process is used to disperse the surface-modified fibers in the neoprene rubber matrix.

유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가 (Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix)

  • 김늘새롬;장영진;이은수;권동준;양성백;이정언;염정현
    • Composites Research
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2021
  • 열가소성 섬유강화 복합재료는 수송용 기기의 경량화 소재로써 적용 분야가 확대되고 있다. 본 연구에서는 분자량이 다른 폴리카보네이트(PC)를 이용하여 연속섬유 강화 유리섬유(GF)/폴리카보네이트(PC) 복합소재의 함침성 및 기계적 물성에 대한 평가를 진행하였다. GF 직물과 PC 필름을 제조한 후, 이를 이용하여 연속가압성형법으로 연속섬유 강화 GF/PC 복합재 평판을 제조하였다. PC 분자량에 따른 용융지수를 측정 및 평가하였고, GF 제직물 강화 GF/PC 복합재료의 인장강도, 굴곡강도, 압축강도 및 기공체적률을 평가하였다. 전계방사형 주사전자현미경을 이용하여 인장파괴된 GF/PC 복합재료의 형태를 분석하여 파괴거동을 확인하였다. 분자량이 20,000일 때 최적의 기계적 특성이 발현되는 것을 확인하였다.

실란커플링제 처리가 폴리케톤섬유/에폭시 복합재료의 계면접착성 및 물성에 미치는 영향 (Effect of Silane Coupling Agent on the Interfacial Adhesion and Mechanical Properties of Polyketone Fiber Reinforced Epoxy Composites)

  • 조하니;양지우;임현수;오우진;이승구
    • 한국염색가공학회지
    • /
    • 제29권2호
    • /
    • pp.77-85
    • /
    • 2017
  • The interfacial adhesion between fiber and matrix affects the physical properties of fiber reinforced composites. In this study, 3-(Methacryloyloxy)propyltrimethoxy silane(MPS) coupling agent was used to increase the interfacial adhesion between polyketone fiber and epoxy resin. The change of surface chemical composition of polyketone fiber treated with MPS was analyzed using a FTIR-ATR. The interfacial bonding between fiber and resin increased with silane coupling agent largely. Consequently, interfacial shear strength(IFSS) was enhanced with increasing concentration of MPS coupling agent and thus, the physical properties of the composites such as flexural properties and dynamic mechanical properties were changed. Flexural strength and modulus increased when the MPS concentration was higher than 0.5wt%. The dynamic storage modulus of Polyketone/Epoxy composites treated with MPS was higher than that of the untreated one. When the MPS concentration of 3wt%, the highest storage modulus was obtained.

탄소섬유/폴리아마이드 6,6 복합재료의 기계적 물성 향상 (Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites)

  • 송승아;온승윤;박고은;김성수
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.365-370
    • /
    • 2017
  • 탄소섬유 강화 열가소성 수지 복합재료(Carbon fiber reinforced thermoplastic composites; CFRTPs)의 물성은 다양한 요인들에 영향을 받는다. 그 중에서도 탄소섬유 표면에 Sizing되어 있는 에폭시(Epoxy) 층은 열가소성 수지와 상호 작용(Interaction)이 없어 매우 취약한 계면을 형성하며, 열가소성 수지의 높은 용융 점도(Melting viscosity)는 탄소섬유 다발(Bundle) 사이로 함침(Impregnation)이 어려워 탄소섬유 강화 복합재료 내부에 기공(Void)를 형성한다. 이와 같이 탄소섬유와 열가소성 수지 간의 낮은 계면전단강도(Interfacial shear strength)은 탄소섬유강화 열가소성 복합재료(Carbon fiber reinforced thermoplastic composites; CFRTPs)의 기계적 물성을 저하시키는 가장 중요한 요인 중 하나이다. 따라서, 본 연구에서는 열가소성 수지와의 상호작용이 없는 탄소섬유 표면의 에폭시 층을 열풍을 통해 제거하고, 열가소성 수지의 점도를 낮춰 함침도를 향상시키기 위해서 용액형 열가소성 수지를 제조하여 탄소섬유 표면에 Sizing 처리 함으로써 CFRTPs의 물성을 향상시켰다. CFRTPs의 층간전단강도(Interlaminar shear strength; ILSS) 및 굽힘 강도(Flexural strength)를 통해 이를 검증하였으며, 수지의 함침도는 기공률(Void content)의 계산을 통해 분석하였다.