• Title/Summary/Keyword: organic light emitting material

Search Result 577, Processing Time 0.03 seconds

Emission Characteristics of White OLEDs with Various Hole Transport Layers (정공수송층에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Ju, Sung-Hoo;Paek, Kyeong-Kap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.983-987
    • /
    • 2010
  • In order to investigate the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs) according to various hole transport layers (HTLs), PHWOLEDs composed of HTLs whose structure are NPB/TCTA, NPB/mCP and NPB/TCTA/mCP, two emissive layers (EMLs) which emit two-wavelengths of light (blue and red), and electron transport layer were fabricated. The applied voltage, power efficiency, and external quantum efficiency at a current density of $1 mA/cm^2$ for the fabricated PHWOLEDs were 7.5 V, 11.5 lm/W, and 15%, in case of NPB/mCP, 5 V, 14.8 lm/W, and 13.7%, in case of NPB/TCTA, and 5.5 V, 14.6 lm/W, and 15%, in case of NPB/TCTA/mCP in the hole transport layer, respectively. High emission efficiency can be obtained when the amount of hole injection from anode is balanced out by the amount of electron injection from the cathode to EML by using NPB/TCTA/mCP structured HTL.

Application of NiOx Anode for Bottom Emission Organic Light Emitting Diode

  • Kim, Young-Hwan;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.448-448
    • /
    • 2007
  • OLED has many advantages of low voltage operation, self radiation, light weight, thin thickness, wide view angle and fast response time to overcome existing liquid crystal display (LCD)'s weakness. Therefore, It draws attention as promising display and has already developed for manufactured goods. Also, OLED is regarded as a only substitute of flexible display with a thin display. However, Indium tin oxide(ITO) thin film for electrode of OLED shows a low electrical properties and is impossible to deposit at high thermal condition because electrical characteristics of ITO is getting worse. One of the ways to realize an improved flexible OLED is to use high internal efficiency electrodes, which have higher work function than those single layer of ITO films of the same thickness. The high internal efficiency electrodes film is developed with structure of nickel oxide for bottom Emission Type of OLED.

  • PDF

Study on compensation of thermal stresses in multilayered materials

  • Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.413-413
    • /
    • 2007
  • In recent years, flexible display devices such as liquid crystal display (LCD), organic light emitting diode (OLED), etc. have attracted considerable interest in a wide variety of applications. Polymer substrate is absolutely necessary to realize this kind of flexible display devices. Using the polymer as a substrate, there are lots of advantages including not only mechanical flexibility such as rolling and bending characteristics but also light weights, low cost and so on. In detail, thickness and weights is only one forth and one second of glass substrate, respectively. However, it needs low temperature below $150^{\circ}C$ in the fabrication process comparing to conventional deposition process. The polymer substrate is not thermally stable as much as the glass substrate so that some deformation can be occurred according to variation of temperature. In particular, performance of devices can be easily deteriorated by shrinkage of substrate when heating it. In this paper, pre-annealing and deposition of buffer layer was introduced and studied to solve previously mentioned problems of the shrinkage and followed shear stress.

  • PDF

Luminescence Properties of $Eu^{2+}$-doped $Ca_2Si_5N_8$ Thin Films ($Eu^{2+}$-doped $Ca_2Si_5N_8$ 박막의 광학특성)

  • Jang, Bo-Yun;Pakr, Joo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.25-27
    • /
    • 2007
  • $Eu^{2+}$-doped $Ca_2Si_5N_8$ was grown on Si(100) substrate using metal-organic deposition (MOD) method and post-annealed at $900^{\circ}C$ in various atmosphere. Luminescence properties of these thin films were investigated with variations of $Eu^{2+}$-doped concentrations and annealing atmosphere. Thin film was formed with clean surface and uniform thickness of about 72 nm. From the measurements of luminescence properties of thin films, film must be post-annealed in nitrogen or mixture of nitrogen and hydrogen atmosphere to emit a sufficient light. For $Ca_{1.5}Eu_{0.5}Si_5N_8$ thin film annealed at $900^{\circ}C$ in nitrogen atmosphere, excitation band from 380 to 420 nm was detected with the maximum intensity at 404 nm and two broad emission bands from 530 to 630 nm were observed. These broad excitation and emission bands must be attributed to the nitrogen incorporations into the films. From the results, $Ca_{2-x}Eu_xSi_5N_8$ thin film has probability for next generation thin film lighting applications such as light emitting diode (LED) or electro-luminescence (EL).

  • PDF

Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor (Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Fabrication and Characterization of Red OLED on the Plastic Substrate (플라스틱 기판상에 적색 OLED 제작과 특성 연구)

  • Jeong, Jin-Cheol;Kim, Hyeong-Seok;Kim, Won-Ki;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.15-19
    • /
    • 2009
  • A high efficient organic red light emitting device with structure of DNTPD/TAPC/$Bebq_2$ :[$(pq)_2Ir(acac)$, SFC-411]/SFC-137 was fabricated on the plastic substrate, which can be applied in the fields of flexible display and illumination. In the device structure, N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolylamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD] as a hole injection layer and 1,1-bis-(di-4-tolylaminophenyl) cyclohexane [TAPC] as a hole transport were used. Bis(10-hydroxybenzo[h]quinolinato) beryllium complex [$Bebq_2$] was used as a light emitting host material. The host material, $Bebq_2$ was doubly doped with volume ratio of 7% iridium(III)bis-(2-phenylquinoline)acetylacetonate[$(pq)_2$Ir(acac)] and 3% SFC-411[red phosphor dye coded by the proprietary company]. And then, SFC-137 was used as an electron transport layer. The luminous intensity and current efficiency of the fabricated device were $22,780\;cd/m^2$ at 9V and 17.3 cd/A under $10,000\;cd/m^2$, respectively. The maximum current efficiency of the device was 22.4cd/A under $580\;cd/m^2$.

  • PDF

Characteristics of Organic Electroluminescent Device Consisting of PDPMA LB Film as a Polymer Hole Transport Material and Alq$_3$ (고분자 정공 전달체로서 PDPMA LB 필름과 Alq$_3$로 구성되는 유기 발광소자의 특성)

  • 오세용;김형민;이창호;최정우;이희우
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • Organic electroluminescent (EL) device was fabricated with Alq$_3$ as an emitting material and PDPMA ultra thin film prepared by Langmuir-Boldgett technique as a polymer hole transport layer. A stable condensed PDPMA monolayer was obtained using arachidic acid as a surface active material. The thickness and absorbance of PDPMA LB film increased line-arly with the layer numbers. The organic multilayered device consisted of ITO/PDPMA LB film (19 layers)/Alq$_3$/Al emitted green light with brightness of 2500 cd/m$^2$ at a DC 14 V Especially, the drive voltage of EL device having PDPMA LB film of 15 layers exhibited the value as low as 4 V. The effects of thickness control and molecular orientation in the PDPMA LB film on EL performance were discussed.

  • PDF

Fabrication of Blue OLED with GDI Host and Dopant (GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작)

  • Jang, Ji-Geun;Shin, Se-Jin;Kang, Eui-Jung;Kim, Hee-Won;Seo, Dong-Gyoon;Lim, Yong-Gyu;Chang, Ho-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF

Effect on Efficiency of the OLED depending on Thickness Variation of EIL $Cs_2CO_3$ (전자 주입층 $Cs_2CO_3$ 두께 변화에 따른 OLED의 효율에 미치는 영향)

  • Han, Hyeon-Seok;Kim, Chang-Hoon;Kang, Yong-Gil;Kim, Gwi-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1438-1439
    • /
    • 2011
  • In this paper, we studied effects on the efficiency, according to thickness of the electron injection layer(EIL) for improving efficiency of Organic Light Emitting Diodes(OLEDs). For the first time, after confirming the optimum thickness of the EIL material $Cs_2CO_3$, we designed OLED devices having a structure of ITO/TPD/$Alq_3/Cs_2CO_3$/Al. And we manufactured devices applying for the optimum thickness of the material in the simulation with thermal evaporating method. And we investigated how the EIL material $Cs_2CO_3$ effects on efficiency of OLEDs in the EIL. As the result, because the EIL material $Cs_2CO_3$ reduces energy potential barrier of the EIL, it facilitated the electron transfer. And, as blocking the hole transfer contributes to an increased recombination, we confirmed that the efficiency of OLEDs increased. And compared to the device without using the EIL material, the device using thickness 1.0 nm of $Cs_2CO_3$ in the EIL shows the excellent efficiency. Therefore, we confirmed that the luminance and the external quantum efficiency increase about 600% and 500% respectively.

  • PDF

A Study on the High-Efficiency Red OLEDs using Phosphorescent Materials (인광재료를 이용한 고효율 적색 유기발광 다이오드에 관한 연구)

  • Shim, Ju-Yong;Jeon, Hyeon-Seong;Cho, Jae-Young;Jung, Jin-Ha;Yoon, Seok-Beom;Kang, Myung-Goo;Oh, Hwan-Sool
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.428-429
    • /
    • 2006
  • In this thesis, verifies electrical-optical characteristics of phosphorescent materials. basic structure of fabricating devices is glass/ITO/$\alpha$-NPD($300{\AA}$)/CBP:Guest($300{\AA}$)/BCP($80{\AA}$)/$Alq_3(100{\AA})$/Al($1000{\AA}$). In efficiency, fabrication of organic light emitting diodes using $Ir(btp)_2acac$ phosphorescent material is external quantum efficiency 0.268% as doping concentration 3%. At CIE coordinates, phosphorescent material $Ir(btp)_2acac$ following materials moves high purity red color(x=0.6686, y=0.3243). The brightness shows $285cd/cm^2$.

  • PDF