• Title/Summary/Keyword: organic light emitting material

Search Result 577, Processing Time 0.048 seconds

Impedance spectroscopy depending on voltage in organic light-emitting diodes (유기발광소자의 전압의존성에 따른 임피던스 분석)

  • Ahn, Joon-Ho;Lee, Joon-Ung;Lee, Won-Jae;Lee, Sung-Ill;Song, Min-Jong;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.481-482
    • /
    • 2005
  • 유기발광소자의 발광층의 전압에 따른 임피던스의 변화를 살펴보았다. 임피던스는 전압의 변화에 따른 의존성을 보이며, 그에 따른 임피던스와 Cole-Cole 반원의 변화를 전기전도기구와 비교하여 살펴보았다. 소자의 구조는 ITO/$Alq_3$/Al의 구조로 발광층의 두께는 60 nm로 열증착하여 실험하였다. 실험에서 전기전도기구의 Ohmic 영역, SCLC 영역, 부성저항영역, TCLC 영역에서 각각 임피던스를 측정하였고, 전압의 증가에 따라 임피던스의 크기가 감소하고, 위상각은 0V에서 용량성을 보이다가 발광영역에서 저항성을 나타내는 것을 알 수 있었다. 또한 전압에 따른 Cole-Cole 반원을 살며보면 전압이 증가할수록 반원의 크기가 감소하는 것을 알 수 있으며, 이를 통해 간단한 등가회로를 예측할 수 있었다.

  • PDF

Efficient White Organic Light-Emitting Diodes with Novel Fluorescent and Phosphorescent Materials (새로운 형광 및 인광 물질을 이용한 효율적인 백색 유기 전기 발광소자)

  • Seo, Ji-Hoon;Kim, Jun-Ho;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.493-494
    • /
    • 2006
  • We have demonstrated highly efficient WOLED with two separated emissive layers using a blue fluorescent dye and a red phosphorescent dye. we also obtain stable $CIE_{x,y}$ coordinates with two-layered WOLEDs. The device structure was ITO/2-TNATA/NPB/two separated emissive layers/Bphen/Liq/Al. The maximum luminous efficiency of the device was 11.6 cd/A at $20\;mA/cm^2$ and $CIE_{x,y}$ coordinates varied from (x = 0.33, y = 0.37) at 6V to (x = 0.28, y = 0.35) at 14V.

  • PDF

Electrical and Optical Properties of Partially Doped Blue Phosphorescent OLEOs (부분 도핑을 이용한 청색 인광 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.512-515
    • /
    • 2009
  • We have fabricated blue phosphorescent organic light emitting diodes (PHOLEDs) using a 3,5'-N,N'-dicarbazole-benzene (mCP) host and iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$] picolinate (Flrpic) guest materials, The Flrpic was partially doped into the mCP host layer, for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs. The recombination of electrons and holes takes place inside the mCP layer adjacent to the mCP/hole blocking layer interface. The best current efficiency was obtained in a device with an emission layer structure of mCP (10 nm)/mCP:Flrpic (20 nm, 10%). The high current efficiency in this device was attributed to the confinement of Ffrpic triplet excitons by the undoped mCP layer with high triplet energy, which blocks diffusion of Ffrpic excitons to the adjacent hole transport layer with a lower triplet energy.

Efficiency Improvement of Organic Light-emitting Diodes depending on Thickness of Hole Injection Materials

  • Kim, Weon-Jong;Yang, Jae-Hoon;Kim, Tag-Yong;Jeong, Joon;Lee, Young-Hwan;Hong, Jin-Woong;Park, Ha-Yong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.233-237
    • /
    • 2005
  • In the device structure of ITO/hole injection layer/N, N'-biphenyl-N, N'-bis-(1-naphenyl)-[1,1'-biphenyl]4,4'-diamine(NPB)/tris(8-hydroxyquinoline) aluminum$(Alq_3)/Al$, we investigated an effect of hole-injection materials (PTFE, PVK) on the electrical characteristics and efficiency of organic light-emitting diodes. A thermal evaporation was performed to make a thickness of NPB layer with a evaporation rate of $0.5\~1.0\;\AA/s$ in a base pressure of $5\times10^{-6}$ Torr. We measured current-voltage characteristics and efficiency with a thickness variation of hole-injection layer. The PTFE and PVK hole-injection layer improve a performance of the device in several aspects, such as good mechanical junction, reducing the operating voltage and energy band adjustment. Compared with the devices without a hole-injection layer, we have obtained that an optimal thickness of NPB was 20 nm in the device structure of $ITO/NPB/Alq_3/Al$. And using the PTFE or PVK hole-injection layer, the external quantum efficiencies of the devices were improved by $24.5\%\;and\;51.3\%$, respectively.

2-Wavelength Organic Light-Emitting Diodes Using Bebq2 Selectively Doped with (pq)2Ir(acac) (Bebq2에 (pq)2Ir(acac)가 선택 도핑된 2-파장 유기발광다이오드)

  • Kim, Min-Young;Ji, Hyun-Jin;Jang, Ji-Geun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.212-215
    • /
    • 2011
  • New organic light-emitting diodes with structure of indium-tin-oxide[ITO]/N,N'-diphenyl-N, N'-bis-[4-(phenyl-m-tolvlamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-poly-aminophenyl) cyclohexane[TAPC]/bis(10-hydroxy-benzo(h)quinolinato)beryllium[Bebq2]/Bebq2:iridium(III)bis(2-phenylquinoline-N,C2')acetylacetonate[(pq)2Ir(acac)]/ET-137[electron transport material from SFC Co]/LiF/Al using the selective doping of 5%-(pq)2Ir(acac) in a single Bebq2 host in the two wavelength (green, orange) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of Bebq2, two kinds of devices with the doped emitter thicknesses of 20${\AA}$ and 40${\AA}$ in the Bebq2:(pq)2Ir(acac) were fabricated. The device with a 20${\AA}$-thick doped emitter is referred to as "D-1" and the device with a 4${\AA}$-thick doped emitter is referred to as "D-2". Under an applied voltage of 9V, the luminance of D-1 and D-2 were 7780 $cd/m^2$ and 6620 $cd/m^2$, respectively. The electroluminescent spectrum of each fabricated device showed peak emissions at the same two wavelengths: 508 nm and 596 nm. However, the relative intensity of 596 nm to 508 nm at those wavelengths was higher in the D-2 than in the D-1. The D-1 and D-2 devices showed maximum current efficiencies of 5.2 cd/A and 6.0 cd/A, and color coordinates of (0.31, 0.50) and (0.37, 0.48) on the Commission Internationale de I'Eclairage[CIE] chart, respectively.

Salen-Aluminum Complexes as Host Materials for Red Phosphorescent Organic Light-Emitting Diodes

  • Bae, Hye-Jin;Hwang, Kyu-Young;Lee, Min-Hyung;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3290-3294
    • /
    • 2011
  • The properties of monomeric and dimeric salen-aluminum complexes, [salen(3,5-$^tBu)_2$Al(OR)], R = $OC_6H_4-p-C_6H_6$ (H1) and R = [salen(3,5-$^tBu$)AlOPh]C$(CH_3)_2$ (H2) (salen = N,N'-bis-(salicylidene)-ethylenediamine) as host layer materials in red phosphorescent organic light-emitting diodes (PhOLEDs) were investigated. H1 and H2 exhibit high thermal stability with decomposition temperature of 330 and $370^{\circ}C$. DSC analyses showed that the complexes form amorphous glasses upon cooling of melt samples with glass transition temperatures of 112 and $172^{\circ}C$. The HOMO (ca. -5.2~-5.3 eV) and LUMO (ca. -2.3~-2.4 eV) levels with a triplet energy of ca. 1.92 eV suggest that H1 and H2 are suitable for a host material for red emitters. The PhOLED devices based on H1 and H2 doped with a red emitter, $Ir(btp)_2$(acac) (btp = bis(2-(2'-benzothienyl)-pyridinato-N,$C^3$; acac = acetylacetonate) were fabricated by vacuum-deposition and solution process, respectively. The device based on vacuum-deposited H1 host displays high device performances in terms of brightness, luminous and quantum efficiencies comparable to those of the device based on a CBP (4,4'-bis(Ncarbazolyl) biphenyl) host while the solution-processed device with H2 host shows poor performance.

Effects of $O_2$ Plasma Treatment on the Electrical Properties of Organic Photovoltaic Cell (유기 광기전 소자의 전기적 특성에 미치는 산소 플라즈마 처리의 영향)

  • Oh, Dong-Hoon;Lee, Young-Sang;Park, Hee-Doo;Shin, Jong-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1463-1464
    • /
    • 2011
  • An indium thin oxide(ITO) is used as a substrate material for organic light-emitting diodes(OLEDs) and organic photovoltaic cells. This study examined the effects of an $O_2$ plasma treatment on the electrical properties of an organic photovoltaic cell. The four probe method and Atomic force microscope(AFM) revealed the lowest surface resistance at the plasma treatment intensity of 250 [W] and the lowest average surface roughness of 2.0 [nm] at 250 [W]. The lowest average resistance of 17 [${\Omega}$/sq] was also observed at 250 [W] 40 [sec]. The $O_2$ plasma treatment device and a basic device in a structure of CuPc/C60/BCP/Al on ITO glass were fabricated by thermal evaporation, respectively. When the $O_2$ plasma treatment was used to the ITO, The experimental results revealed that the power conversion efficiency(PCE) indicated 65 [%] higher in the PCE than that without the plasma treatment.

  • PDF

Warpage of Flexible OLED under High Temperature Reliability Test (고온 신뢰성 시험에서 발생된 플렉서블 OLED의 휨 변형)

  • Lee, Mi-Kyoung;Suh, Il-Woong;Jung, Hoon-Sun;Lee, Jung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Flexible organic light-emitting diode (OLED) devices consist of multi-stacked thin films or layers comprising organic and inorganic materials. Due to thermal coefficient mismatch of the multi-layer films, warpage of the flexible OLED is generated during high temperature process of each layer. This warpage will create the critical issues for next production process, consequently lowering the production yield and reliability of the flexible OLED. In this study, we investigate the warpage behavior of the flexible OLED for each bonding process step of the multi-layer films using the experimental and numerical analysis. It is found that the polarizer film and barrier film show significant impact on warpage of flexible OLED, while the impact of the OCA film on warpage is negligible. The material that has the most dominant impact on the warpage is a plastic cover. In order to minimize the warpage of the flexible OLED, we estimate the optimal material properties of the plastic cover using design of experiment. It is found that the warpage of the flexible OLED is reduced to less than 1 mm using a cover plastic of optimized properties which are the elastic modulus of 4.2 GPa and thermal expansion coefficient of $20ppm/^{\circ}C$.

Inverted CdSe/ZnS Quantum Dots Light-Emitting Diode Using Low-Work Function Organic Material Polythylenimine Ethoylated

  • Kim, HongHee;Son, DongIck;Jin, ChangKyu;Hwang, DoKyung;Yoo, Tae-Hee;Park, CheolMin;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.246.1-246.1
    • /
    • 2014
  • Over the past several years, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED). In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[1] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QDLEDs, blend of poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo) and poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] are used as hole transporting layer (HTL) to improve hole transporting property. At the operating voltage of 8 V, the QDLED device emitted spectrally orange color lights with high luminance up to 2450 cd/m2, and showed current efficacy of 0.6 cd/A, respectively.

  • PDF

Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives (광전도성 고분자와 안트라센 유도체를 이용한 백색 전계발광소자의 발광 특성)

  • Lee Jeong-Hwan;Choi Hee-Lack;Lee Bong
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.543-547
    • /
    • 2005
  • Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.