• Title/Summary/Keyword: organic light emitting diodes (OLEDs)

Search Result 351, Processing Time 0.036 seconds

Improving current and luminous efficacy of red phosphorescent Organic Light Emitting Diodes (OLEDs) by introducing graded-layer device designs enabled by Organic Vapor Phase Deposition (OVPD)

  • Schwambera, Markus;Keiper, Dietmar;Meyer, Nico;Heuken, Michael;Lindla, Florian;Bosing, Manuel;Zimmermann, Christoph;Jessen, Frank;Kalisch, Holger;Jansen, Rolf H.;Gemmern, Philipp Van;Bertram, Dietrich
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1140-1143
    • /
    • 2009
  • Organic Vapor Phase Deposition (OVPD) equipment enables the accurate and simultaneous control of deposition rates of multiple materials as well as their homogenous mixing in the gas phase. Graded or even cross-faded layers by varying carrier gas flow are options to improve OLED performances. As example, we will show how the efficacies of standard red phosphorescent OLEDs with sharp interfaces can be increased from 18.8 cd/A and 14.1 lm/W (1,000 cd/$m^2$) to 36.5 cd/A (+94 %, 18 % EQE) and 33.7 lm/W (+139 %) by the introduction of cross-fading, which is a controlled composition variation in the organic film.

  • PDF

Recycling of Organic Materials Using Purification by Recrystallization for Solution-Processed OLEDs (재결정화법에 의한 유기물 재활용 및 이를 이용한 습식 OLED 제작)

  • Lee, Jin-Hwan;Hong, Ki-Young;Shin, Dong-Kyun;Lee, Jin-Young;Park, Jong-Woon;Seo, Hwa-Il;Seo, Yu Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.65-69
    • /
    • 2016
  • We have investigated the possibility of recycling of an organic material that is wasted during thermal evaporation. To this end, we have collected a wasted organic material (N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine(NPB)) from a vacuum chamber, purified it by recrystallization, and fabricated bilayer organic light-emitting diodes (OLEDs) with the recycled NPB. It is found that the surface roughness of thin films coated with the purified NPB is much enhanced. OLEDs fabricated by thermal evaporation of the purified NPB show lower device efficiency than OLEDs with the original NPB. However, the power efficiency of OLED fabricated by spin coating of the purified NPB is comparable with that of OLED with the original NPB. Therefore, such a recycling method by recrystallization would be more suitable for solution-processed OLEDs.

Electrical and Optical Characteristics of White OLEDs with a Rubrene doped Layer (Rubrene 도핑층을 이용한 백색 OLEDs의 전기 및 광학적 특성)

  • Moon, Dae-Gyu;Lee, Chan-Jae;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-56
    • /
    • 2007
  • We have fabricated organic white light emitting diodes by mixing two colors from very thin rubrene doped and non-doped DPVBi layers. The device structure was ITO/2-TNATA(15 nm)/${\alpha}$-NPD(35 nm)/DPVBi:rubrene(5 nm)/DPVBi(30 nm)/$Alq_{3}(5\;nm)$/BCP(5 nm)/LiF(0.5 nm)/Al(150 nm). The yellow-emitting rubrene of 0.7 wt % was doped into the blue-emitting DPVBi host for the white light. CIE coordinate of the device was (0.31, 0.33) at 8 V. The color coordinates were stable at wide ranges of driving voltages. The luminance was over $1,000\;cd/m^{2}$ at 8 V and increases to $14,500\;cd/m^{2}$ at 12 V. The maximum current efficiency of the device was 8.2 cd/A at $200\;cd/m^{2}$.

The Characteristics of Organic Light-emitting Diodes With a New Blue Phosphorescent Material (새로운 청색의 인광 물질을 어용한 유기 발광 소자의 전기적 특성 및 수명에 대한 연구)

  • Kim, Y.K.;Park, J.H.;Seo, J.H.;Seo, J.H.;Han, J.W.;Im, C.;Han, S.H.;Lee, S.H.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.74-78
    • /
    • 2007
  • A new blue phosphorescent material for organic light emitting diodes (OLEDs), Iridium(III)bis[2-(4-fIuoro-3-benzonitrile)-pyridinato-N,C2'] picolinate (Firpic-CN), was synthesized and studied. We compared characteristics of Firpic-CN and Bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) which has been used for blue dopant materials frequently. The devices structure were indium tin oxide (ITO) (1000 ${\AA}$)/N,N'-diphenyl-N,N'-(2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (500 ${\AA}$)/4,4'-N,N'-dicarbazole-biphyenyl (CBP) : FIrpic and FIrpic-CN (X wt%)/4,7-diphenyl-1,10-phenanthroline (BPhen) (300 ${\AA}$)/lithum quinolate (Liq) (20 ${\AA}$)/Al (1000 ${\AA}$). 15 wt% FIrpic-CN doped device exhibits a luminance of $1450\;cd/m^2$ at 12.4 V, luminous efficiency of 1.31 cd/A at $3.58mA/cm^2$, and Commission Internationale d'Eclairage $(CIE_{x,y})$ coordinates of (0.15, 0.12) at 12 V which shows a very deep blue emission. We also measured lifetime of devices and was presented definite difference between devices of FIrpic and FIrpic-CN. Device with FIrpic-CN as a dopant presented lower longevity due to chemical effect of CN ligand.

Surface treatment of ITO with Nd:YAG laser and OLED device characteristic (Nd:YAG 레이저로 표면처리된 ITO를 전극으로 한 유기EL 소자의 특성)

  • No, I.J.;Shin, P.K.;Kim, H.K.;Kim, Y.W.;Lim, Y.C.;Park, K.S.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1359-1360
    • /
    • 2006
  • lTO(Indium-Tin-Oxide) was used as anode material for OLED. Characteristics of ITO have great effect on efficiency of OLEDS(Organic light emitting diodes). ITO surface was treated by Nd:YAG laser in order to improve its chemical properties, wettability, adhesive property and to remove the surface contaminants while maintaining its original function. In this study, main purpose was to improve the efficiency of OLEDs by the ITO surface treatment: ITO surface was treated using a Nd:YAG(${\lambda}=266nm$, pulse) with a fixed power of 0.06[w] and various stage scanning velocities. Surface morphology of the ITO was investigated by AFM. Test OLEDs with surface treated ITO were fabricated by deposition of TPD (HTL), Ald3 (ETL/TML) and Al (cathode) thin films. Device performance of the OLEDs such as V-I-L was investigated using Source Measurement Unit (SMU: Keithly. Model 2400) and Luminance Measurement (TOPCON. BM-8).

  • PDF

A study on Improvement of OLEDs luminance property using PEDOT:PSS (PEDOT:PSS를 이용한 OLEOs의 발광 특성 향상에 관한 연구)

  • Kim, Dong-Eun;Kim, Byoung-Sang;Kim, Doo-Seok;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1293-1294
    • /
    • 2006
  • OLEDs based on organic thin films are similar to semiconductor base light-emitting diodes in that they were also considered to be one of the next generation flat-panel displays. They are attractive because of low-operating voltage, low power consumption, ease of fabrication, and low cost. In this study, we used poly (3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) (PE DOT : PSS) as a hole injection layer. In this experiment spin coating method was used with various speed rate. The fundamental structure of the OLEDs was ITO/PEDOT:PSS/NPB/$Alq_3$/Al. As a result, we obtained the enhancement performance of OLEDs when the spin coating speed was 4000 rpm. We obtained a maximum luminance of 24334 $cd/m^2$ at a current density of 967 $mA/cm^2$.

  • PDF

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF

Characteristics of ITO films grown by linear facing target sputtering (FTS) and OLEDs properties fabricated on FTS-grown ITO anode (선형 대향 타겟 스퍼터를 이용하여 제작한 ITO 박막의 특성과 이를 이용하여 제작한 유기발광소자 특성)

  • Kim, Han-Ki;Moon, Jong-Min;Kim, Ji-Hwim;Kim, Jang-Joo;Kang, Jae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.401-402
    • /
    • 2007
  • The preparation and characteristics of ITO anode films grown using a linear facing target sputtering (FTS) technique for use in organic light emitting diodes (OLED) and flexible OLED is described. The electrical, optical, and work function of the ITO anode, which was prepared by linear FTS at room temperature, were comparable to those of commercial ITO anode films. In particular, linear FTS-grown ITO films shows very smooth surface without defects such as pin hole and cracks due to low substrate temperature. Furthermore OLED with the linear FTS-grown ITO anode film shows comparable electrical and optical properties to those of OLED with the commercial crystalline-ITO anode film. This suggested that linear FTS is promising thin film technology for preparing high quality anode film in OLEDs and flexible OLEDs.

  • PDF

Dual - Drive & - Emission Panel

  • Miyashita, Takuya;Naka, Shigeki;Okada, Hiroyuki;Onnagawa, Hiroyoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.707-710
    • /
    • 2004
  • We have proposed on dual-drive & -emission (DDE) panel based on organic light-emitting diodes (OLEDs). The device is composed on independent operation of two OLED structures with two transparent electrodes for data signals and an intermediate reflective electrode for common scan signal. Typical device structure is ITO / organic electroluminescent layer (1) /intermediate reflective electrode / organic electroluminescent layer (2) /transparent electrode. Symmetric bright emission could be obtained by applying AlNd as the intermediate reflective electrode and $MoO_3$ as a hole injection layer for upper device structure. The proposed panel is useful for emissive face-to-face panel exhibited for different images.

  • PDF

Red Fluorescent Organic Light-Emitting Diodes Using Modified Pyran-containing DCJTB Derivatives

  • Lee, Kum-Hee;Kim, Sung-Min;Kim, Jeong-Yeon;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2884-2888
    • /
    • 2010
  • Two red fluorescent DCJTB derivatives (Red 1 and 2) based on modified pyrans were synthesized and their electroluminescent properties were investigated. Multilayered OLEDs were fabricated with the device structure of ITO/NPB (40 nm)/Red 1, 2 or DCJTB (0.5 or 1%): $Alq_3$ (20 nm)/$Alq_3$ (40 nm)/Liq (2 nm)/Al. All devices exhibited efficient red emissions. In particular, a device containing emitter Red 2 as a dopant in the emitting layer, the maximum luminance was $8737\;cd/m^2$ at 12.0 V, the luminous and power efficiencies were 2.31 cd/A and 1.25 lm/W at $20\;mA/cm^2$, respectively. The peak wavelength of the electroluminescence was 638 nm with the CIE (x,y) coordinates of (0.63, 0.36) at 7.0 V.