• Title/Summary/Keyword: organic light emitting diodes (OLEDs)

Search Result 351, Processing Time 0.029 seconds

Effects of ITO surface modification using self-assembly molecules on the characteristics of OLEDs

  • Oh, Se-Young;Kim, Dong-Hwi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.632-635
    • /
    • 2007
  • We have synthesized 4'-nitrobiphenyl-4-carboxylic acid (NBCA) and fabricated the hole-only device consisting of ITO/NBCA SAM/TPD (1500 ${\AA}$)/Al (500 ${\AA}$) and the organic light emitting diodes (OLEDs) consisting of ITO/NBCA SAM/TPD (600 ${\AA}$)/Alq3 (600 ${\AA}$)/Al (600 ${\AA}$). The prepared hole-only device with NBCA exhibited lower driving voltage than the device with 4-nitrobenzoic acid (NBA). OLEDs using NBCA also show high external quantum efficiency.

  • PDF

Optical and Electrical Properties of Two-Wavelength White Tandem Organic Light-Emitting Diodes Using Red and Blue Materials (적색과 청색 물질을 사용한 2파장 방식 백색 적층 OLED의 광학 및 전기적 특성)

  • Park, Chan-Suk;Jua, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.581-586
    • /
    • 2015
  • We studied optical and electrical properties of two-wavelength white tandem organic light-emitting diodes using red and blue materials. White fluorescent OLEDs were fabricated using Alq3 : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). White single fluorescent OLED showed maximum current efficiency of 9.7 cd/A, and tandem fluorescent OLED showed 18.2 cd/A. Commission Internationale de l'Eclairage (CIE) coordinates of single and tandem fluorescent OLEDs was (0.385, 0.435), (0.442, 0.473) at $1,000cd/m^2$, respectively. White hybrid OLEDs were fabricated using SH-1 : BD-2 (3 vol.% 10 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 20 nm) as EML. White single hybrid OLED showed maximum current efficiency of 7.8 cd/A, and tandem hybrid OLED showed 26.4 cd/A. Maximum current efficiency of tandem hybrid OLED was more twice as high as single OLED. CIE coordinates of single hybrid OLED was (0.315, 0.333), and tandem hybrid OLED was (0.448, 0.363) at $1,000cd/m^2$. CIE coordinates in white tandem OLEDs compared to those for single OLEDs observed red shift. This work reveals that stacked white OLED showed current efficiency improvement and red shifted emission than single OLED.

Photocurrent multiplication process in OLEDs due to light irradiation and crystalline hole transporting layer (유기발광소자의 결정구조에 따른 Photocurrent 발광효율특성 연구)

  • Lim, Eun-Ju;Lee, Kie-Jin;Han, Woo-Mi;E, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1026-1029
    • /
    • 2002
  • We report the electric properties of organic light emitting diodes (OLEDs) by controlling the carrier density according to the crystalline of copper(II) phthalocyanine(CuPc) and the irradiation light intensity. OLEDs were constructed with indium tin oxaide (ITO)/CuPc/triphenyl-diamin (TPD)/tris-(8-hydroxyquinoline)aluminum (Alq3)/Al. The transport properties of OLEDs were changedby the heat-treatments of CuPc. The irradiation of red and blue light exciting CuPc, TPD and Alq3. And then we observed the carrier density of OLEDs.

  • PDF

Photocurrent multiplication process in OLEDs (Photocurrent에 의한 유기발광소자의 발광효율특성 연구)

  • Lim, Eun-Ju;Han, Woo-Mi;E, Jung-Yoon;Cha, Deok-Joon;Lee, Yong-San;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.77-80
    • /
    • 2002
  • In order to enhence the photocurrent multiplication process, we controlled the irradiation light and the material of cathode layer of organic light emitting diodes (OLEDs). The structures of OLEDs were indium tin oxaide (ITO)/ copper(II) phthalocyanine (CuPc)/triphenyl-diamine (TPD)/ tris-(8-hydroxyquinoline)aluminum (Alq3)/ aluminum (Al). We found that OLEDs were changed by the photocurrent and free charge carrier multiplication process due to the irradiation of light. The rate of photocurrent was increased by the irradiation of red and blue light.

  • PDF

Enhanced Lifetime and Efficiency of Organic Light Emitting Diodes

  • Choi, Han-Ho;Kim, Myung-Seop;Park, Sang-Tae;Yang, Joong-Hwan;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1803-1804
    • /
    • 2006
  • In this paper, device performances of organic lightemitting diodes (OLEDs) will be presented for AMOLED and general illumination applications. Various types of advanced devices were developed to enhance the power efficacy and luminous efficiency. Here we also demonstrated longer lifetime AM-OLED structures, which lifetime is about 100 hours until $L/L_0$ reaches 0.99.

  • PDF

Effect of $HfO_X$ treatment on ITO surface of organic light emitting diodes using Impedance spectroscopy analysis

  • Cho, Jae-Hyun;Park, Hyung-Jun;Han, Kyu-Min;Sohn, Sun-Young;Jung, Dong-Geun;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.506-508
    • /
    • 2008
  • In this work, we used impedance spectroscopy analysis to determine the effect of the $HfO_X$ treatment on the surface of ITO and to model the equivalent circuit for OLEDs. Devices with an ITO/Organic material/Al structure can be modeled as resistances and capacitances arranged in parallel or in series. The number of elements depends on the composition of the structure, essentially the number of layers, and the contacts.

  • PDF

Effects of BCP Electron Transport Layer Thickness on the Efficiency and Emission Characteristics of White Organic Light-Emitting Diodes (BCP 전자수송층 두께가 백색 OLED의 효율 및 발광 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • We have fabricated white organic light-emitting diodes (OLEDs) using several thicknesses of electron-transport layer. The multi-emission layer structure doped with red and blue phosphorescent guest emitters was used for achieving white emission. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as an electron-transport layer. The thickness of BCP layer was varied to be 20, 55, and 120 nm. The current efficiency, emission and recombination characteristics of multi-layer white OLEDs were investigated. The BCP layer thickness variation results in the shift of emission spectrum due to the recombination zone shift. As the BCP layer thickness increases, the recombination zone shifts toward the electron-transport layer/emission-layer interface. The white OLED with a 55 nm thick BCP layer exhibited a maximum current efficiency of 40.9 cd/A.

White Organic Light-Emitting Diodes Using DCJTB-Doped 24MeSAlq as a New Hole-Blocking Layer (새로운 정공차폐 층 (Hole blocking layer)으로 DCJTB 도핑된 24MeSAlq를 이용한 백색유기발광다이오드)

  • Kim, Mi-Suk;Lim, Jong-Tae;Yeom, Geun-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.231-234
    • /
    • 2006
  • To obtain balanced white-emission and high efficiency of the organic light-emitting diodes (OLEDs), a deep blue emitter made of N,N'-diphenyl-N,N'-bis(1-naphthyl)- (1,1'-biphenyl)-4,4'-diamine (NPB) emitter and a new red emitter made of the Bis(2,4 -dimethyl-8-quinolinolato)(triphenylsilanolato)aluminum(III) (24MeSAlq) doped with red fluorescent 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H -pyran (DCJTB) were used and the device was tuned by varying the thickness of the DCJTB-doped 24MeSAlq and $Alq_3$. For the white OLED with 10 nm thickness DCJTB (0.5%) doped 24MeSAlq and 45 nm thick $Alq_3$, the maximum luminance of about 29,700 $Cd/m^2$ could be obtained at 14.8 V. Also, Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.28) at about 100 $Cd/m^2$, which is very close to white light equi-energy point (0.33, 0.33), could be obtained.

Research Trends of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes (OLED용 지연형광 소재의 연구 동향)

  • Lee, Ju Young
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.218-229
    • /
    • 2019
  • The development of highly efficient thermally activated delayed fluorescence (TADF) materials is an active area of recent research in organic light emitting diodes (OLEDs) since the first report by Chihaya Adachi in 2011. Traditional fluorescent materials can harvest only singlet excitons, leading to the theoretically highest external quantum efficiency (EQE) of 5% with considering about 20% light out-coupling efficiency in the device. On the other hand, TADF materials can harvest both singlet and triplet excitons through reverse intersystem crossing (RISC) from triplet to singlet excited states. It could provide 100% internal quantum efficiencies (IQE), resulting in comparable high EQE to traditional rare-metal complexes (phosphorescent materials). Thanks to a lot of efforts in this field, many highly efficient TADF materials have been developed. This review focused on recent molecular design concept and optoelectronic properties of TADF materials for high efficiency and long lifetime OLED application.

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.26-30
    • /
    • 2006
  • Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.