DOI QR코드

DOI QR Code

White Organic Light-Emitting Diodes Using DCJTB-Doped 24MeSAlq as a New Hole-Blocking Layer

새로운 정공차폐 층 (Hole blocking layer)으로 DCJTB 도핑된 24MeSAlq를 이용한 백색유기발광다이오드

  • Kim, Mi-Suk (Dept. of Materials Science and Engineering, SungKyunKwan University) ;
  • Lim, Jong-Tae (Dept. of Materials Science and Engineering, SungKyunKwan University) ;
  • Yeom, Geun-Young (Dept. of Materials Science and Engineering, SungKyunKwan University)
  • 김미숙 (성균관대학교 신소재공학과) ;
  • 임종태 (성균관대학교 신소재공학과) ;
  • 염근영 (성균관대학교 신소재공학과)
  • Published : 2006.04.27

Abstract

To obtain balanced white-emission and high efficiency of the organic light-emitting diodes (OLEDs), a deep blue emitter made of N,N'-diphenyl-N,N'-bis(1-naphthyl)- (1,1'-biphenyl)-4,4'-diamine (NPB) emitter and a new red emitter made of the Bis(2,4 -dimethyl-8-quinolinolato)(triphenylsilanolato)aluminum(III) (24MeSAlq) doped with red fluorescent 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H -pyran (DCJTB) were used and the device was tuned by varying the thickness of the DCJTB-doped 24MeSAlq and $Alq_3$. For the white OLED with 10 nm thickness DCJTB (0.5%) doped 24MeSAlq and 45 nm thick $Alq_3$, the maximum luminance of about 29,700 $Cd/m^2$ could be obtained at 14.8 V. Also, Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.28) at about 100 $Cd/m^2$, which is very close to white light equi-energy point (0.33, 0.33), could be obtained.

Keywords

References

  1. K. Mameno, R. Nishikawa, K. Suzuki, S. Matsumoto, T. Yamaguchi, K. Yoneda, Y. Hamada, H. Kanno, Y. Nishio, H. Matsuoka, Y. Saito, S. Oima, N. Mori, G. Rajeswaran, S. Mizukoshi and T. K. Hatwar, Proceedings of the 19th International Display Workshops, Hiroshima, Japan., 4-6 December (2002) 235
  2. J. Kido, in: S. Miyata and S. Nalwa (Eds.), Organic Electroluminescent Materials and Devices, Gordon and Breach, Amsterdam., 335 (1997)
  3. S. Tokito, J. Takata and Y. Taga, J. Appl. Phys. 77, 1985 (1995) https://doi.org/10.1063/1.358834
  4. J. Kido, M. Kimura and K. Nagai, Science., 267, 1332 (1995) https://doi.org/10.1126/science.267.5202.1332
  5. R. H. Jordan, A. Dodabalapur, M. Strukelj and T. M. Miller, Appl. Phys, Lett., 68, 1192 (1996) https://doi.org/10.1063/1.115965
  6. S. Tasch, E..J,W, List, O, Ekstrom, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y.Geeerts, U. Scherf and K. Mullen, Appl. Phys. Lett., 71, 2883 (1997) https://doi.org/10.1063/1.120205
  7. M. Granstom and O. Inganas, Appl. Phys. Lett., 68, 147 (1996) https://doi.org/10.1063/1.116129
  8. R. S. Deshpande, V. Bulovic and S. R. Forrest, Appl. Phys. Lett., 75, 888 (1999) https://doi.org/10.1063/1.124250
  9. C. W. Ko and Y. T. Tao, Appl. Phys. Lett., 79, 4234 (2001) https://doi.org/10.1063/1.1425454
  10. R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y-J. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest and J. J. Brown, Appl. Phys, Lett., 81, 162 (2002) https://doi.org/10.1063/1.1489503
  11. Y. Sato, S. Ichinosawa, T. Ogata, M. Fugono and Y. Murata, Synth, Metal., 111-112, 25 (2000) https://doi.org/10.1016/S0379-6779(99)00407-5
  12. J. T. Lim, C. H. Jeong, J. H, Lee, G. Y. Yeom, H. K. Jeong, S. Y. Chai and W. I. Lee (submitted to J. Organometallic Chem. 2005) https://doi.org/10.1016/j.jorganchem.2006.02.002
  13. C. H. Chen and J. Shi, Coord.Chem. Rev., 171, 161 (1998) https://doi.org/10.1016/S0010-8545(98)00022-8
  14. M. A. Baldo and S. R. Forrest, Phys. Rev., B 62, 10958 (2000) https://doi.org/10.1103/PhysRevB.62.10958
  15. M. Fujihira and Ganzorig, Mater. Sci, Eng., B 85, 203 (2001) https://doi.org/10.1016/S0921-5107(01)00580-3
  16. J. T Lim, M. J. Lee, N. H. Lee, Y. J. Ahn and C. H. Lee, D. H. Hwang, Current Appl. Phys., 4, 327 (2004) https://doi.org/10.1016/j.cap.2003.11.040