• Title/Summary/Keyword: OLEDs

Search Result 641, Processing Time 0.023 seconds

Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer (Hexaazatrinaphthylene 유도체를 정공 주입층으로 사용한 고효율 녹색 인광 OLEDs)

  • Lee, Jae-Hyun;Lee, Jonghee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-729
    • /
    • 2015
  • Organic light emitting diodes (OLEDs) are regarded as the next generation display and solid-state lighting due to their superb achievements from extensive research efforts on improving the efficiency and stability of OLEDs in addition to developing new materials. Herein, efficient green phosphorescent OLEDs were obtained by using hexaazatrinaphthylene (HAT) derivatives as a hole injection layer. External quantum and current efficiencies of OLEDs were enhanced from 8.8% and 30.8 cd/A to 13.6% and 47.7 cd/A, respectively by inserting a thin layer of HAT derivatives between the ITO and hole transporting layer. The enhancement of OLEDs was found to be originated from the inserted HAT derivatives, which resulted in the optimized hole-electron balance inside the emission layer.

Inverted White OLEDs Fabricated by Full Wet-Processes

  • Lee, Dong-Hyun;Zhu, Xun;Seo, Seung-Woo;Ryu, Ji-Chang;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.683-686
    • /
    • 2009
  • We report inverted white OLEDs fabricated by full wet processes. We utilized inverted structure OLEDs since the structure was better for the realization of full wet fabrication of OLEDs. It was found that the performance of inverted OLEDs is comparable to that of conventional OLEDs. In this presentation, we will discuss in detail a few important issues on the full wet fabrication of OLEDs.

  • PDF

Current Status of OLEDs Technology

  • Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.229-230
    • /
    • 2000
  • The current status of OLEDs technology is reviewed. Comparison has been made between small molecule based OLEDs and polymer LEDs. In addition, advantages of OLEDs technology and technical issues for commercialization are addressed. Details of these issues will be discussed at the meeting.

  • PDF

Efficient Organic Light-emitting Diodes with Aluminum-doped Zinc Oxide Anodes (알루미늄 도핑된 산화아연 양극을 적용한 고효율 유기발광다이오드)

  • Lee, Ho-Nyeon;Lee, Young-Gu;Jung, Jong-Guk;Lee, Seung-Eui;Oh, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.711-715
    • /
    • 2007
  • Properties of organic light-emitting diodes (OLEDs) with aluminum-doped zinc oxide (ZnO:Al) anodes showed different behaviors from OLEDs with indium tin oxide (ITO) anodes according to driving conditions. OLEDs with ITO anodes gave higher current density and luminance in lower voltage region and better EL and power efficiency under lower current density conditions, However, OLEDs with ZnO:Al anodes gave higher current density and luminance in higher voltage region over about 8V and better EL and power efficiency under higher current density over $200mA/cm^2$. These seemed to be due to the differences in conduction properties of semiconducting ZnO:Al and metallic ITO. OLEDs with ZnO:Al anodes showed nearly saturated efficiency under high current driving conditions compared with those of OLEDs with ITO anodes. This meant better charge balance in OLEDs with ZnO:Al anodes. These properties of OLEDs with ZnO:Al anodes are useful in making bright display devices with efficiency.

Electromagnetic Modeling of OLEDs and Its Applications to Advanced OLEDs

  • Wu, Chung-Chih;Lin, Chun-Liang;Cho, Ting-Yi;Yang, Chih-Jen;Lu, Yin-Jui
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.5-8
    • /
    • 2006
  • The optical structures and rigorous electromagnetic modeling of OLEDs will be discussed of first and then their applications in analyses and designs of various advanced OLED structures, e.g. microcavity OLEDs, tandem OLEDs and top-emitting OLEDs etc., will be reported.

Novel Electrical Dopants for High Performance OLEDs

  • Leem, Dong-Seok;Lee, Jae-Hyun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1311-1314
    • /
    • 2008
  • We have developed new electrical dopants of rhenium oxide ($ReO_3$) and cupper iodide (CuI) as p-dopants and rubidium carbonate ($Rb_2CO_3$) as an n-dopant, respectively. $ReO_3$ has advantage of low temperature evaporation (about $300^{\circ}C$) with enhanced device stability. Various kinds of high performance organic light emitting diodes have been realized, including bottom emission, tandem, and top-emission OLEDs.

  • PDF

Electromagnetic modeling of OLEDs and its applications to advanced OLEDs

  • Wu, Chung-Chih;Lin, Chun-Liang;Cho, Ting-Yi;Yang, Chih-Jen;Lu, Yin-Jui
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.229-232
    • /
    • 2006
  • General discussions of the optical structures and rigorous electromagnetic modeling of OLEDs will be first given, and then their applications in analyses and designs of various advanced OLED structures, e.g.microcavity OLEDs, tandem OLEDs and top-emitting OLEDs etc., will be reported.

  • PDF

Study on Characteristic by ITO Surface Treatment and Cathode Change of Organic Light Emitting Diodes (ITO 표면 처리와 음전극 변화에 따른 OLEDs의 특성 연구)

  • Kim, Doo-Seok;Jang, Yoon-Ki;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1143-1147
    • /
    • 2005
  • In this study, we report an improved efficiency of Organic light emitting diodes(OLEDs), using $UV/O_3$ treated anode and different cathode. We investigated the efficiency of OLEDs by $UV/O_3$ treatment of ITO surface. We Performed $UV/O_3$ treatment and found that $UV/O_3$ treatment enhanced the performance of OLEDs. The fundamental structure of the OLEDs was ITO $anode/{\alpha}-NPD/Alq_3/Al$ or Li:Al cathode. The Li:Al can improve the OLEDs efficiency dramatically in cathode because it has lower work function than Al. Current-voltage, Luminance-voltage characteristics and luminance efficiency were measured at room temperature.

Study on Efficiency improvement of OLEDs by surface treatment of $UV/O_3$ ($UV/O_3$ 표면처리에 따른 OLEDs 효율 향상에 관한 연구)

  • Jang, Yoon-Ki;Kim, Byoung-Sang;Kwon, Oh-Kwan;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.142-144
    • /
    • 2005
  • Main purpose of this study is a improved efficiency of Organic light emitting diodes(OLEDs) concerning $UV/O_3$ treatment. We investigated the efficiency of OLEDs by $UV/O_3$ treatment of ITO surface. We measured current density-voltage, luminance-voltage characteristics in different $UV/O_3$ treatment time and observed ITO surface roughness by using AFM(Atomic Force Microscope). The fundamental structure of the OLEDs was $ITO/NPB/Alq_3/LiF/Al$. We performed $UV/O_3$ treatment and found that $UV/O_3$ treatment enhanced the performance of OLEDs. We also found that change of surface roughness according to difference time a $UV/O_3$ treatment

  • PDF

Fully Solution-Processed Green Organic Light-Emitting Diodes Using the Optimized Electron Transport Layers (최적화된 전자 수송층을 활용한 완전한 용액공정 기반 녹색 유기발광다이오드)

  • Han, Joo Won;Kim, Yong Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.486-489
    • /
    • 2018
  • Solution-processed organic light-emitting diodes (OLEDs) have the advantages of low cost, fast fabrication, and large-area devices. However, most studies on solution-processed OLEDs have mainly focused on solution-processable hole transporting materials or emissive materials. Here, we report fully solution-processed green OLEDs including hole/electron transport layers and emissive layers. The electrical and optical properties of OLEDs based on solution-processed TPBi (2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) as the electron transport layer were investigated with respect to the spin speed and the number of layers. The performance of OLEDs with solution-processed TPBi exhibits a power efficiency of 9.4 lm/W. We believe that the solution-processed electron transport layers can contribute to the development of efficient fully solution-processed multilayered OLEDs.