• Title/Summary/Keyword: organic films

Search Result 1,333, Processing Time 0.036 seconds

Organic Gas Response Characteristics for Temperature of Fatty Acid LB Films (지방산 LB막의 온도에 대한 유기가스 반응특성)

  • 이준호;진철남;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.353-356
    • /
    • 1999
  • The electrical characteristics of fatty acid LB films were investigated to develop the gas sensor using Langmuir-Blodgett(LB) films which have high ordered orientation and ordering structure. The deposition status of fatty acid LB films were verified by the measurements of UV absorbance. The conductivity of fatty acid LB films for horizontal direction at room temperature was about $10^8[S/cm]$,/TEX>, which was correspond to semiconductor material. The activation energy for fatty acid LB films with respect to variation of temperature was about l.O[eV]. The response characteristics for organic gas were confirmed by measuring the response time, recovery time, and reproducibility of the fatty acid LB films to each organic gas. Also, the penetration and adsorption behavior of gas molecule were confirmed through the organic gas response characteristics of fatty acid LB films with respect to temperature.

  • PDF

A Study on the Fabrication of P(VDF- TrFE) Organic Thin Films and Piezoelectric Characteristics (P(VDF-TrFE) 유기 박막의 제조와 압전특성에 관한 연구)

  • Park, Su-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.395-399
    • /
    • 2008
  • The purpose of this paper is to investigate the fabrication of P(VDF-TrFE) organic thin films through the vapor deposition method and the piezoelectric properties of the organic thin films thus produced. Vapor deposition was performed under the following conditions: the working temperature, and the pressure of reaction chamber were $300^{\circ}C$, and $2.0{\times}10^{-5}$ Torr, respectively. The molecular structure and crystallinity of the evaporated organic thin films were evaluated by using a FT-IR (Fourier-Transform Infrared spectroscopy) and XRD (X-ray diffractometry), The results showed that crystallinity increased with an increase in the substrate temperature. When the P(VDF-TrFE) organic thin films were fabricated by increasing the substrate temperature, its piezoelectric coefficient($d_{33}$) increased.

Organic Gas Response Characteristics for Horizontal Direction of Fatty Acid LB Ultra-thin Films (지방산 LB초박막의 수평방향에 대한 유기가스 반응특성)

  • Lee, Jun-Ho;Choe, Yong-Seong;Kim, Do-Gyun;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.379-384
    • /
    • 1999
  • Langmuir-Blodgett(LB) films which have high ordered orientation and ordering structure are fabricated by LB method which deposit the ultra-thin films of organic materials at a molecular level. The electrical characteristics of stearic acid LB ultra-thin films for the horizontal direction were investigated to develop the gas sensor using LB ultra-thin films. The optimal deposition condition to deposit the LB ultra-thin films was obtained from $\pi-A$ isotherms and the deposition status of stearic acid LB ultra-thin films was verified by the measurement of deposition ratio, UV-absorbance, and electrical properties for LB ultra-thin films. The conductivity of stearic acid LB ultra-thin films for horizontal direction was about $10_{-8}[S/cm]$. The activation energy for LB ultra-thin films with respect to variation of temperature was about 1.0[eV], which was correspond to semiconductor material. The response characteristics for organic gas were confirmed by measuring the response time, recovery time, and reproducibility of the LB ultra-thin to each organic gas. Also, the penetration and adsorption behavior of gas molecule were confirmed through the organic gas response characteristics of LB ultra-thin films with respect to temperature.

  • PDF

Analysis of Gas Response Characteristics of Maleate Organic Ultra-thin Films (말레에이트계 유기초박막의 가스 반응 특성 분석)

  • Choe, Yong-Seong;Kim, Jeong-Myeong;Kim, Do-Gyun;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.442-450
    • /
    • 1999
  • In this paper, we have fabricated Langmuir-Blodgett(LB) films by LB technique and evaluated the deposited status of LB films by UV-vis absorbance. It was found thatthe thickness of LB films per a layer are $27~30[{\AA}]$ by ellipsometry. The responeses between LB films and organic gases were investigated using by I-V characteristics of LB films and F-R diagram of quartz crystal. The response orders between LB films and organic gases observed by I-V characteristics were as following ; chloroform, methanol, acetone and ethanol in the order of their short chain length. The response mechanism between LB films and organic gases observed by F-R diagram of quartz crystal could be modeled on adsorption at surface, penetration, desorption at surface and inside.

  • PDF

Organic Thin Film Transistors with Gate Dielectrics of Plasma Polymerized Styrene and Vinyl Acetate Thin Films

  • Lim, Jae-Sung;Shin, Paik-Kyun;Lee, Boong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.95-98
    • /
    • 2015
  • Organic polymer dielectric thin films of styrene and vinyl acetate were prepared by the plasma polymerization deposition technique and applied for the fabrication of an organic thin film transistor device. The structural properties of the plasma polymerized thin films were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, and contact angle measurement. Investigation of the electrical properties of the plasma polymerized thin films was carried out by capacitance-voltage and current-voltage measurements. The organic thin film transistor device with gate dielectric of the plasma polymerized thin film revealed a low operation voltage of −10V and a low threshold voltage of −3V. It was confirmed that plasma polymerized thin films of styrene and vinyl acetate could be applied to functional organic thin film transistor devices as the gate dielectric.

Real-time X-ray Scattering as a Nanostructure Probe for Organic Photovoltaic Thin Films

  • Lee, Hyeon-Hwi;Kim, Hyo-Jeong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.181-181
    • /
    • 2013
  • Recently, nanostructure and the molecular orientation of organic thin films have been largely paid attention due to its importance in organic electronics such as organic thin film transistors (OTFTs), organic light emitting diodes (OLEDs), and organic photovoltaics (OPVs). Among various methods, the diffraction and scattering techniques based on synchrotron x-rays have shown powerful results in organic thin film systems. In this work, we introduce the in-situ annealing system installed at PLS-II (Pohang Light Source II) for organic thin films by simultaneously conducting various x-ray scattering measurements of x-ray reflectivity, conventional x-ray scattering, grazing incidence wide angle x-ray scattering (GI-WAXS) and so on. Using the in-situ measurement, we could obtain real time variation of nanostructure as well as molecular orientation during thermal annealing in metal-phthalocyanine thin films. The variation of surface and interface also could be simultaneously investigated by the x-ray reflectivity measurement.

  • PDF

Functional Polymer Thin Films based on the Layer-by-Layer Deposition

  • Char, Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.192-192
    • /
    • 2006
  • Organic/organic and organic/inorganic multilayer films composed of organic polyelectrolytes (PE) and inorganic nanoparticles/platelets were prepared from the layer-by-layer (LbL) deposition using both spinning and dipping. The difference in both LbL methods is quantitatively compared in terms of internal layer ordering and physical properties of the multilayered films. Additionally, we suggest that the patterned multilayer films can be easily prepared by the combination of the spin SA and the lift-off method. Freestanding films were also prepared with the LbL deposition on low energy substrates, which allows the detailed analysis of composition within the films. Other LbL thin films prepared with block copolymer micelles will be discussed.

  • PDF

Fabrication of Organic-Inorganic Superlattice Films Toward Potential Use For Gas Diffusion Barrier

  • Yun, Gwan-Hyeok;Muduli, Subas Kumar;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.394-394
    • /
    • 2012
  • We fabricated organic-inorganic superlattice films using molecular layer deposition (MLD) and atomic layer deposition (ALD). The MLD is a gas phase process in the vacuum like to atomic layer deposition (ALD) and also relies on a self-terminating surface reaction of organic precursor which results in the formation of a monolayer in each sequence. In the MLD process, 'Alucone' is very famous organic thin film fabricated using MLD. Alucone layers were grown by repeated sequential surface reactions of trimethylaluminum and ethylene glycol at substrate temperature of $80^{\circ}C$. In addition, we developed UV-assisted $Al_2O_3$ with gas diffusion barrier property better than typical $Al_2O_3$. The UV light was very effective to obtain defect-free, high quality $Al_2O_3$ thin film which is determined by water vapor transmission rate (WVTR). Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of each organic, inorganic film. Composition of the organic films was confirmed by infrared (IR) spectroscopy. Ultra-violet (UV) spectroscopy was employed to measure transparency of the organic-inorganic superlattice films. WVTR is calculated by Ca test. Organic-inorganic superlattice films using UV-assisted $Al_2O_3$ and alucone have possible use in gas diffusion barrier for OLED.

  • PDF

Voltage-Current Properties of Polyimide use Electrical Power Installation (전력설비용 Polyimide의 전압-전류특성)

  • 전동규;이경섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.112-115
    • /
    • 1998
  • We investigate the qualities of organic materials by which can manufacture organic thin films for solar cells and make thin films for insulation layers of an insulated cable. We give pressure stimulation into organic thin films and detect the induced displacement current. In processing of a device manufacture, We can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/organic thin films(polyimide)/Au and I-V characteristic of the device is measured from 0[V] to +5[V]. The maximum value of measured current is increased as the number of accumulated layers are decreased. The resistance for the number of accumulated layers, the energy density for an input voltage show desired results, and the insulation of a thin film is better as the interval between electrodes is larger.

  • PDF

Hybrid Organic-Inorganic Films Fabricated Using Atomic and Molecular Layer Deposition Techniques

  • George, Steven M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.75.1-75.1
    • /
    • 2013
  • Atomic layer deposition (ALD) and molecular layer deposition (MLD) are based on sequential, self-limiting surface reactions that produce atomic layer controlled and conformal thin film growth. ALD can deposit inorganic films and MLD can deposit films containing organics. ALD and MLD can be used together to fabricate a wide range of hybrid organic-inorganic alloy films. The relative fraction of inorganic and organic constituents can be defined by controlling the ratio of the ALD and MLD reaction cycles used to grow the film. These hybrid films can be tuned to obtain desirable mechanical, electrical and optical properties. This talk will focus on the growth and properties of metal alkoxide films grown using metal precursors and various organic alcohols that are known as "metalcones". The talk will highlight the tunable mechanical properties of alucone alloys grown using Al2O3 ALD and alucone MLD and the tunable electrical conductivity of zincone alloys grown using ZnO ALD and zincone MLD with DEZ and hydroquinone as the reactants.

  • PDF