• Title/Summary/Keyword: organic cattle manure

Search Result 91, Processing Time 0.025 seconds

Changes in Physico-chemical and Microbiological Parameters during Active Composting of Cattle Manure (우분 퇴비화의 주발효과정 중 이화학적 및 미생물학적 파라미터의 변화)

  • Kim, Yoon Seok;Kang, Myoung Kyu;Bae, Kyung Sook;Lee, Kyu Seung;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.267-273
    • /
    • 1997
  • Various physico-chemical and microbiological parameters of a composting system were compared with respect to their potential use for the monitoring and evaluation of composting processes for cattle manure. The temperature changed within a range of $30-65^{\circ}C$ during the whole composting process, and the period of active composting (>$40^{\circ}C$) persisted for 16 days. The concentrations of total carbon, total nitrogen, and organic matter decreased by 15% during active composting, but significant changes in C/N ratio were not observed. The decrease of temperature in the latter period of active composting caused a decrease of $NH_4^+-N$ and an increase of $NO_3^--N$ in the composting pile. When temperature exceeded $50^{\circ}C$, the population of thermophiles was higher than that of mesophiles by more than 1 or 2 orders of magnitude. Correlation analyses showed that amylase activity correlated positively with the population of mesophiles and reducing sugar content, but negatively with the population of thermophiles. Amylase activity was higher at the beginning of active composting, whereas cellulase, xylanase and ligninase activities which showed close relationship with each other, increased continually during active cornposting, suggesting the distinction of temporal niches between amylose-degrading and lignocellulose-degrading bacteria in the same habitat.

  • PDF

Research on the Working Environment and Personal Protective Equipment of Korean Native Cattle Raising Farmers (한우 사육자 작업환경 및 작업복과 보호구 착용 실태 분석)

  • Kim, Insoo;Lee, Kyung-Suk;Chae, Hye-Seon;Kim, Kyungsu;Choi, Dong-Phil;Kim, Hyo-Cher
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.4
    • /
    • pp.891-906
    • /
    • 2016
  • This study examined the working site environment of Korean native cattle raising farmers and their actual condition of wearing personal protective equipment as part of preventing disasters during agricultural work. To this end, 160 Korean cattle raising farmers were surveyed and a site visit was performed on 10 farms. According to an examination of the cattle breeding environment, the major harmful factors were in the following order: fine dust (12.8%), organic feed dust (10.3%), contact with cattle (9.7%), manure (8.2%), germs and viruses (8.1%), harmful gases (7.4), contact with obstacles (6.7), and temperature (6.6%). The current status of the rate of wearing protection was in the order of gloves (20.9%), working hats (19.7%), boots (19.6%), masks (10.9%), protective clothing (8.9%), and specialized working clothing (6.6%). Nevertheless, most Korean cattle raising farmers recognized the risks when they did not wear protective equipment and the need for wearing protectors, but they mostly did not wear personal protective equipment due to a lack of knowledge on the selection of appropriate personal protective equipment and the discomfort they experience when they put on protectors. Even when they put on protective equipment, 38% was inappropriate for the farming work environment. Given the research results, improvements on and the development of specialized working clothing and personal protective equipment to protect farmers from harmful and dangerous materials from the cattle nurturing environment is necessary. Overall, based on the study data, objectified data collection, a determination of the necessary performance elements of personal protective equipment, and R&D will be needed through an on-site current status investigation.

Survey on the Green house Flower Soil Chemicophysical Properties and Amount of Fertilizers and Soil Amendment Applications (시설화훼(施設花卉) 재배지(栽培地) 토양(土壤)의 이화학성(理化學性)과 화학비료(化學肥料) 및 토양개량제(土壤改良制) 시용량(施用量) 조사(調査))

  • Hwang, Ki-Sung;Noh, Dae-Chul;Ho, Qyo-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.132-135
    • /
    • 1998
  • This study was conducted to obtain basic information for soil improvement in flower crop cultivating greenhouse soil through survey on the chemical and physical properties of greenhouse soils. Total of 85 Flowcultivating farms were surveyed and analysis was done on the soil characteristics, amounts of chemical fertilizer and soil amendmentuse. The result are as follows: In soil properties of flower cultivating greenhousees, silt clay loam was 51%and 68% of the surveyed soils had good drainage condition. Ground water table was over 90-120cm which was optimum range for flower cultivation. Flower cultivating farms had problem with accumulation of fertility. Nitrate nitrogen was accumulated in Gypsophila paniculate farms and available phosphorus, and exchangeable postassium were significantly higher in greenhouse soils about 2 times than in open field soil. Application amount of chemical feltilizers in greenhouses were nitrate 211,phosphorus 135, and potassium 132kg/ha, respectively. Amount of organic matter used in greenhouse were high in order of cattle manure> compost> organic fertilizer> poultry manure> swine manure and their application amounts were69, 103, 32, 20, and 43 MT/ha, respectively.

  • PDF

Effect of organic matter addition on the solubility of arsenic in soil and uptake by rice: a field-scale study (유기물 시용이 토양 내 비소의 용해도와 벼의 비소 흡수에 미치는 영향)

  • Yoo, Ji-Hyock;Kim, Dan-Bi;Kim, Won-Il;Kim, Sung-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.439-446
    • /
    • 2021
  • A field-scale study was conducted to evaluate the effect of organic matter amendments on the solubility of arsenic (As) in paddy soil and uptake by rice. Six organic matter (rice bran, rice straw, pig/cattle/fowls manure compost and swine liquid manure) were added to two polluted soils with high As (53 mg kg-1) and low As concentration (28 mg kg-1), and changes in soil solution constituents was monitored. The mean As concentrations in soil solution from the high As soil with rice bran, pig manure compost and swine liquid manure addition were significantly higher (0.61-1.15 mg L-1) than that of the control (0.42-0.66 mg L-1). Regression between As and Fe in soil solution indicated that As was attributable to reductive dissolution of Fe (hydr)oxides and it was driven by organic matter addition. Mean As concentrations in brown rice from the high As soil were 0.35-0.46 mg kg-1, above the maximum safety level of inorganic As (0.35 mg kg-1), and tended to be higher in organic matter amended soils than that of the control. The significant correlation between grain As and soil solution As was not observed and it was probably attributable to As tolerance of rice causing the reduction of As uptake and/or translocation to grain. However, considering the significant As release in soil solution from the high As soil and the tendency of grain As elevation after organic matter addition, it is needed to be cautious for food safety when amending organic matter to paddy soil with high As concentration.

Comparison of OECD Nitrogen Balances of Korea and Japan

  • Kim, Seok-Cheol;Park, Yang-Ho;Lee, Yeon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.295-302
    • /
    • 2005
  • The nitrogen (N) balance in Korea during 1985-1997 was calculated according to the surface balance method of the PARCOM guidelines and compared with Japanese N balance. The some differences were founded in the coefficients used on calculating N balance in two nations. Of the important parameters, which can make a big difference in balance, N input by organic fertilizers was not included in Korea different with Japanese, due to absence of reliable statistics and then made lower the input. Nitrogen destruction rate from livestock manure was adjusted differently with 15% in Korea but 28% in Japan. There was some difference in the conversion factors of livestock number into manure N quantity in two nations, but the gap was ignoble scale except beef cattle. Our manure N production rate of beef cattle might be evaluated to be so lower than Japanese. Biological N fixation by pulses was very higher in Korea than in Japan but scarcely affect the increase of total N input, due to small cultivation area. In contrast, N fixation rate by free-living organisms in Korean and Japanese wet paddies showed the big difference with 7.6 and $37.0kg\;ha^{-1}\;yr^{-1}$, respectively, and therefore $29.4kg\;ha^{-1}\;yr^{-1}$ of nitrogen was estimated to be more inputted in Japan. Although there are many points to be more specified and improved, still, Korean N balance was very high with $250-257kg\;ha^{-1}$ in the mid of 1990s, which was the second highest level in OECD countries and furthermore increased continuously during the investigation. In contrast in Japan, which has similar fanning system with Korea, N balance was lower with $130-158kg\;ha^{-1}$ and has decreased continuously since 1993. This high N balance was mainly due to a high usage of chemical fertilizers in our intensive fanning system and the fast increment of livestock feeding. Therefore, the more active action to decrease chemical fertilizer utilization and reduce livestock feeding density is required in the government and farmer sides.

Emergence Rate and Growth Characteristics of Ginseng Affected by Different Types of Organic Matters in Greenhouse of Direct-Sowing Culture (비닐하우스에서 인삼 직파재배 시 유기물 처리에 따른 연차간 입모율 및 생육특성)

  • Park, Hong Woo;Mo, Hwang Sung;Jang, In Bae;Yu, Jin;Lee, Young Seob;Kim, Young Chang;Park, Kee Choon;Lee, Eung Ho;Kim, Ki Hong;Hyun, Dong Yun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.27-36
    • /
    • 2015
  • Shading and soil environment are the main factors of growth and yield in ginseng (Panax ginseng C. A. Meyer). Ginseng yield is directly related to survival rate because of increased missing plant for their growing period. Under field conditions, diseases and pests significantly affect plant survival rate. We evaluated the seedling establishment, growth and ginsenoside of the ginseng plants, under controlled management conditions in a plastic greenhouse, when their treated with different types of organic matter. Ginseng seeds were sown at a rate of three seeds per hole, and the seeding space measured $10cm{\times}15cm$. Compared to the control, treatment of cattle manure vermicompost (CMV) was shown to increase seedling establishment and decrease ginsenoside content. Root weights of plants treated with CMV were higher than those of plants treated with other types of organic matter. In addition, seedling establishment of 2-year-old ginseng plants was decreased when it was compared to that of 1-year-old ginseng plants. Our results indicated that organic matter type and rate were associated with seedling establishment, growth characteristic and ginsenoside content in greenhouse of ginseng direct-sowing culture.

Effects of Application Levels of Fermented Cattle Manure on Forage Yield, Quality and Soil Characteristics in Orchardgrass at Jeju Area (제주지역 오차드그라스 초지에서 톱밥발효우분퇴비 시용수준이 목초의 생산성, 사료가치 및 토양특성에 미치는 영향)

  • Hwang, Kyung-Jun;Park, Nam-Geon;Park, Hyung-Soo;Lee, Chong-Eon;Kim, Nam-Young;Ko, Moon-Suk;Kim, Moon-Chul;Song, Sang-Teak
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • A study was conducted to determine the effects the of cattle manure application on forage yield, quality and soil in orchard grass pasture at the experimental field of Subtropical Animal Experiment Station, National Institute of Animal Science from 2008 to 2009. The experiment was arranged in a randomized complete block design with three replications. The treatment consisted of chemical fertilizer (CF N-200 kg/ha), cattle manure 50% (basis N, CM50%), CM100% (basis N), CM200% (basis N). The dry matter (DM) yield of CM200% was the highest among the other treatments. CF showed the highest average crude protein (CP) content by 12.4% and CM50% showed the lowest content by 11.0%. Average acid detergent fiber (ADF) and neutral detergent fiber (NDF) content were 30.4 and 69.7% respectively. All treatments have narrow range of total digestibility nutrient (TDN) from 64.0% to 69.1%. But there were big difference between treatment in forage nitrate content. Changes of physical and chemical properties of soils for applications of CF 200% and CM 200% was clearly in cattle manure application. Especially, CM application in pasture increased CF application with respect to soil pH, organic matter (OM), and avaliable phosphorous ($P_2O_5$) contents of soils.

Achieving a Nitrogen Balance for Japanese Domestic Livestock Waste: Testing the Scenario of Planting Feed Grain in Land Left Fallow

  • Kaku, K.;Ikeguchi, A.;Ogino, A.;Osada, T.;Hojito, M.;Shimada, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.1026-1032
    • /
    • 2004
  • In this study, we assess the recent changes in the amount of excretion by the livestock industry, and discuss the effects of increasing the ratio of cultivated land on the reduction of surplus nitrogen from a cost-performance perspective. Nitrogen has contributed to acidification of ecosystems and nitrate concentrations in groundwater, especially in Europe. Therefore, we assessed the level of nitrogen waste from the domestic Japanese livestock industry, including cattle, swine and poultry during the period 1987-2001. This assessment assumed that 40% of the nitrogen from the domestic livestock industry was emitted as gas into the air and that 60% of the nitrogen was contained in manure used on domestic cultivated land. Nitrogen excreted from livestock, excluding gas emission, decreased by 11% from 0.504 million tons to 0.447 million tons during 1993-2001. Thus, the peak period of nitrogen excretion from livestock is already past in Japan. However, the area of cultivated land under management also decreased during 1990-2000. In addition, the area of paddy and upland fields left unplanted for a year increased during 1990-2000. Therefore, if all manure from the domestic livestock industry had been utilized on the fields as organic fertilizer, but not on arable land left uncultivated for the past year, the nitrogen per net area of cultivated land would have increased by 5%, from 125 to 131 N kg/ha, during 1990-2000. To reduce the nitrogen ratio on cultivated land through the planting of feed grain to utilize the nitrogen, a comparison of the cost performance of feed grains indicated that barley would be more suitable than wheat, rice or soybean. Had barley been planted in 100% of the land left fallow for the past year in 2000, 4% (20,000 tons) of the nitrogen from livestock waste would have been used in the harvest, and the nitrogen per land unit would have not increased but decreased from 125 to 121 N kg/ha during the same decade. Furthermore, when converted into Total Digestible Nutrients, 7% of imported feed corn could have been replaced with the harvested barley in 2000. Planting barley on this fallow land had three benefits; reducing the risk of manure overload on the land, slowing down the decrease in cultivated land, and raising the feed self-sufficiency ratio. Thus, it would be beneficial to plant feed grain such as barley in land left fallow for the past year through utilization of manure.

Effects of Daily Liquid Manure Amount on Silage Corn Productivity and Soil Chemical Characteristics (젖소액비(液肥) 시용량(施用量)에 따른 담근먹이옥수수의 생산성과 토양화학적 특성의 변화)

  • Shin, Jae-Soon;Lee, Hyuk-Ho;Shin, Dong-Eun;Kim, Jeong-Gap;Cho, Young-Mu;Yook, Wan-Bang;Ryoo, Jong Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 1999
  • Experiment was carried out to determine the agronomic characteristics, forage yield of silage corn(Zea mays L.) soil chemical characterictics and $NO_3-N$ level in infiltration water by different application rates of daily liquid manures. Four treatment consisting of chemical fetilizer, $200kg\;N\;ha^{-1}$, daily liquid manure $200kg\;N\;ha^{-1}$, $300kg\;N\;ha^{-1}$ and $400kg\;N\;ha^{-1}$ were arranged in a randonmized complete block design with three replicates. The results obtained at National Livestock Research Institute, RDA., in Suwon from 1996 to 1997 are summarized as follows; In plant height and crude protein content, it were appeared to highest by 264cm, 6.8% at the cattle slurry 150% plot(T3), respectively. but Dry matter yield(14.5MT/ha) and TDN(9.5MT/ha) production of chemical fertilizer plot(T1) were highest. Among daily liquid manure amount, dry matter yield(14.0MT/ha) and TDN yield(9.1MT/ha) of daily liquid manure 100% plot(T2) were resulted to 96% and 97% of chemical fertilizer plot(T1). End year's soil organic matter and phosphate content were appeared to high than those of beginning year in daily liquid manure plots, but it was not in proportioned to increase according to slurry amount. $NO_3-N$ level in infiltration water lower than 60cm of all plots were lowed than a permitted limit of cattle drinkable. As a result, it was appeared that the optimum application amount of dairy liquid manure was 200kg/ha by manure-N.

  • PDF

The Role of Organic Amendments with Different Biodegradability in Ammonia Volatilization during Composting of Cattle Manure (우분뇨 퇴비화 중 암모니아 휘산에 대한 이분해성 및 난분해성 유기 첨가물의 역할)

  • Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Kwak, Jin-Hyeob;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2009
  • This study was conducted to investigate the roles of co-existed organic materials (OM) with different biodegradability in composting of cattle manure in terms of $CO_2$ emission and $NH_3$ volatilization. Either sawdust (SD, low biodegradability) or rice bran (RB, high biodegradability) was mixed with cattle manure at a various rate and the amounts of $CO_2$ emission and $NH_3$ volatilization were determined periodically during 4 weeks of composting. Percentage of dry matter loss during the composting period was also calculated. The amount of $CO_2$ emitted increased with increasing rate of OM and was significantly (P<0.01) higher in the RB treatment than in the SD treatment by 43 to 122% depending on the rate of OM Accordingly, % of dry matter loss during 4 weeks of composting was higher in the RB (rang: from 35.1 % to 41.5%) than that in the SD treatments (from 18.7% to 22.6%), showing that RB is more biodegradable than SD. During the early composting period up to 8 days, negligible amount of ammonia volatilization was detected in both treatments regardless of application rates. In the RB treatment, substantial amount of ammonia volatilization was detected thereafter, however, no meaningful ammonia volatilization was observed in the SD treatment until the end of composting. Such differences could be attributed to the different properties of SD and RB. For example, the high C/N ratio of SD could enhance $NH_4^+$ immobilization and thus decrease $NH_4^+$ concentration that is susceptible to ammonia volatilization. Binding of $NH_4^+$ on to phenolic compounds of SD may also contribute to the decrease in $NH_4^+$ concentration. Meanwhile, as RB has a relatively low C/N ratio, remineralization of immobilized $NH_4^+$ could increase $NH_4^+$ concentration as high as the level for the occurrence of ammonia volatilization. Therefore, our study suggests that OM which is resistant to biodegradation can reduce $NH_3$ volatilization largely by physico-chemical pathways across the entire composting period and that easily biodegradable OM can retard $NH_3$ volatilzation via microbial immobilization in the early period of composting followed by rapid remineralization, leading to substantial volatilization of $NH_3$ in the middle stage of composting.