• 제목/요약/키워드: organic bistable device

검색결과 5건 처리시간 0.028초

Electrical Bistable Characteristics of Organic Charge Transfer Complex for Memory Device Applications

  • Lee, Chang-Lyoul
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.278-283
    • /
    • 2015
  • In this work, the electrical bistability of an organic CT complex is demonstrated and the possible switching mechanism is proposed. 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tetracyanoquinodimethane (TCNQ) are used as an organic donor and acceptor, respectively, and poly-methamethylacrylate (PMMA) is used as a polymeric matrix for spin-coating. A device with the Al/($Al_2O_3$)/PMMA:BCP:TCNQ[1:1:0.5 wt%]/Al configuration demonstrated bistable and switching characteristics similar to Ovshinsky switching with a low threshold voltage and a high ON/OFF ratio. An analysis of the current-voltage curves of the device suggested that electrical switching took place due to the charge transfer mechanism.

Hybrid polymer-quantum dot based single active layer structured multi-functional device (Organic Bistable Device, LED and Photovoltaic Cell)

  • Son, Dong-Ick;Kwon, Byoung-Wook;Park, Dong-Hee;Kim, Tae-Whan;Choi, Won-Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.97-97
    • /
    • 2010
  • We demonstrate the hybrid polymer-quantum dot based multi-functional device (Organic bistable devices, Light-emitting diode, and Photovoltaic cell) with a single active-layer structure consisting of CdSe/ZnS semiconductor quantum-dots (QDs) dispersed in a poly N-vinylcarbazole (PVK) and 1,3,5-tirs- (N-phenylbenzimidazol-2-yl) benzene (TPBi) fabricated on indium-tin-oxide (ITO)/glass substrate by using a simple spin coating technique. The multi-functionality of the device as Organic bistable device (OBD), Light Emitting Diode (LED), and Photovoltaic cell can be successfully achieved by adding an electron transport layer (ETL) TPBi to OBD for attaining the functions of LED and Photovoltaic cell in which the lowest unoccupied molecular orbital (LUMO) level of TPBi is positioned at the energy level between the conduction band of CdSe/ZnS and LiF/Al electrode (band-gap engineering). Through transmission electron microscopy (TEM) study, the active layer of the device has a p-i-n structure of a consolidated core-shell structure in which semiconductor QDs are uniformly and isotropically adsorbed on the surface of a p-type polymer core and the n-type small molecular organic materials surround the semiconductor QDs.

  • PDF

Nonvolatile Flexible Bistable Organic Memory (BOM) Device with Au nanoparticles (NPs) embedded in a Conducting poly N-vinylcarbazole (PVK) Colloids Hybrid

  • Son, Dong-Ick;Kwon, Byoung-Wook;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.440-440
    • /
    • 2011
  • We report on the non-volatile memory characteristics of a bistable organic memory (BOM) device with Au nanoparticles (NPs) embedded in a conducting poly N-vinylcarbazole (PVK) colloids hybrid layer deposited on flexible polyethylene terephthalate (PET) substrates. Transmission electron microscopy (TEM) images show the Au nanoparticles distributed isotropically around the surface of a PVK colloid. The average induced charge on Au nanoparticles, estimated using the C-V hysteresis curve, was large, as much as 5 holes/NP at a sweeping voltage of ${\pm}3$ V. The maximum ON/OFF ratio of the current bistability in the BOM devices was as large as $1{\times}105$. The cycling endurance tests of the ON/OFF switching exhibited a high endurance of above $1.5{\times}105$ cycles and a high ON/OFF ratio of ~105 could be achieved consistently even after quite a long retention time of more than $1{\times}106$ s.

  • PDF

Organic Bistable Switching Memory Devices with MeH-PPV and Graphene Oxide Composite

  • Senthilkumar, V.;Kim, Yong Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.290-292
    • /
    • 2015
  • We have reported about bipolar resistive switching effect on Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]:Graphene oxide composite films, which are sandwiched between aluminum and indium tin oxide electrodes. In this case, I-V sweep curve showed a hysteretic behavior, which varied according to the polarity of the applied voltage bias. The device exhibited excellent switching characteristics, with the ON/OFF ratio being approximately two orders in magnitude. The device had good endurance (105 cycles without degradation) and long retention time (5 × 103 s) at room temperature. The bistable switching behavior varied according to the trapping and de-trapping of charges on GO sites; the carrier transport was described using the space-charge-limited current (SCLC) model.