DOI QR코드

DOI QR Code

Electrical Bistable Characteristics of Organic Charge Transfer Complex for Memory Device Applications

  • Lee, Chang-Lyoul (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
  • Received : 2015.11.13
  • Accepted : 2015.11.23
  • Published : 2015.11.30

Abstract

In this work, the electrical bistability of an organic CT complex is demonstrated and the possible switching mechanism is proposed. 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tetracyanoquinodimethane (TCNQ) are used as an organic donor and acceptor, respectively, and poly-methamethylacrylate (PMMA) is used as a polymeric matrix for spin-coating. A device with the Al/($Al_2O_3$)/PMMA:BCP:TCNQ[1:1:0.5 wt%]/Al configuration demonstrated bistable and switching characteristics similar to Ovshinsky switching with a low threshold voltage and a high ON/OFF ratio. An analysis of the current-voltage curves of the device suggested that electrical switching took place due to the charge transfer mechanism.

Keywords

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990). https://doi.org/10.1038/347539a0
  2. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, Nat. Photonics 6, 105 (2012). https://doi.org/10.1038/nphoton.2011.318
  3. H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998). https://doi.org/10.1126/science.280.5370.1741
  4. Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, Nat. Commun. 5, 3005 (2014). https://doi.org/10.1038/ncomms4005
  5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789
  6. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, Nat. Mater. Nat. Commun. 5, 5293 (2014).
  7. N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695 (1996). https://doi.org/10.1038/382695a0
  8. A. Szymanski1, D. C. Larson, and M. M. Labes, Appl. Phys. Lett. 14, 88 (1969). https://doi.org/10.1063/1.1652733
  9. H. Carchano, R. Lacoste, and Y. Segui, Appl. Phys. Lett. 19, 414 (1971). https://doi.org/10.1063/1.1653751
  10. H. K. Henisch and W. R. Smith, Appl. Phys. Lett. 24, 589 (1974). https://doi.org/10.1063/1.1655065
  11. A. R. Elsharkawi and K. C. Kao, J. Phys. Chem. Solids. 38, 95. (1977). https://doi.org/10.1016/0022-3697(77)90152-4
  12. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968). https://doi.org/10.1103/PhysRevLett.21.1450
  13. D. Ma, M. Aguiar, J. A. Freire, and I. A. Hummelgen, Adv. Mater. 12, 1063 (2000). https://doi.org/10.1002/1521-4095(200007)12:14<1063::AID-ADMA1063>3.0.CO;2-9
  14. D. Tondelier, K. Lmimouni, D. Vuillaume C. Fery, and G. Haas, Appl. Phys. Lett. 85, 5763 (2004). https://doi.org/10.1063/1.1829166
  15. W. Tang, H. Shi, G. Xu, B. S. Ong, Z. D. Popovic, J. Deng, J. Zhao, and G. Rao, Adv. Mater. 17, 2307 (2005). https://doi.org/10.1002/adma.200500232
  16. T. Tsujoka and H. Kondo, Appl. Phys. Lett. 83, 937 (2003). https://doi.org/10.1063/1.1597966
  17. A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett. 82, 1215 (2003). https://doi.org/10.1063/1.1555263
  18. A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett. 84, 999 (2004). https://doi.org/10.1063/1.1644611
  19. L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002). https://doi.org/10.1063/1.1473234
  20. L. P. Ma, S. M. Pyo, J. Ouyang, Q. F. Xu, and Y. Yang, Appl. Phys. Lett. 82, 1419 (2003). https://doi.org/10.1063/1.1556555
  21. J. Wu, L. P. Ma, and Y. Yang, Phys. Rev. B 69, 115321 (2004). https://doi.org/10.1103/PhysRevB.69.115321
  22. L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84, 607 (2004). https://doi.org/10.1063/1.1643547
  23. R. S. Potember, T. O. Poehler, and D. O. Cowon, Appl. Phys. Lett. 34, 405 (1979). https://doi.org/10.1063/1.90814
  24. Q. Zhang, W. Wang, G. Ye, X. Yan, Z. Zhnag, and Z. Hua, Synth. Met. 144, 285 (2004). https://doi.org/10.1016/j.synthmet.2004.04.012
  25. X.-L. Mo, G.-R. Chen, Q.-J. Cai, Z.-Y. Fan, H.-H. Xu, Y. Ya, J. Yang, H.-H. Gu, and Z.-Y. Hua, Thin Solid Films 436, 259 (2003). https://doi.org/10.1016/S0040-6090(03)00593-5
  26. J. Li, Z. Xue, W. M. Liu, S. Hou, X. Li, and X. Zhao, Phys. Lett. A 266, 441 (2000). https://doi.org/10.1016/S0375-9601(99)00911-1
  27. K. Z. Wang, Z. Q. Xue, M. Ouyang, D. W. Wang, H. X. Zhang, and C. H. Huang, Chem. Phys. Lett. 243, 217 (1995). https://doi.org/10.1016/0009-2614(95)00861-W
  28. T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 83, 1252 (2003). https://doi.org/10.1063/1.1600848
  29. J. Y. Ouyang, C.W. Chu, C. R. Szmanda, L. P. Ma and, Y. Yang, Nat. Mater. 3, 918 (2004). https://doi.org/10.1038/nmat1269
  30. C. W. Chu, J. Y. Ouyang, J.-H. Tseug, and Y. Yang, Adv. Mater. 17, 1440 (2005). https://doi.org/10.1002/adma.200500225
  31. R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005). https://doi.org/10.1021/nl050587l
  32. B. Milian, R. Pou-Amerigo, R. Viruela and E. Orti, Chem. Phys. Lett. 391, 148 (2004). https://doi.org/10.1016/j.cplett.2004.04.102
  33. M. S. Matos and M. H. Gehlen, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60, 1421 (2004). https://doi.org/10.1016/j.saa.2003.08.006
  34. R. M. Q. Mello, E. C. Azevedo, A. Meneguzzi, M. Aguiar, L. Akcelrud, and I. A. Hummelgen, Macromol. Mater. Eng. 287, 466 (2002). https://doi.org/10.1002/1439-2054(20020701)287:7<466::AID-MAME466>3.0.CO;2-U
  35. Zhiwen Jin, Guo Liu, and Jizheng Wang, AIP Adv. 3, 052113 (2013). https://doi.org/10.1063/1.4804948
  36. A. Prakash, J. Ouyang, J.-L. Lin, and Y. Yang, J. Appl. Phys. 100, 054309 (2006). https://doi.org/10.1063/1.2337252
  37. S.-H. Lee, S.-H. Oh, Y. Ji, J. Kim, R. Kang, D. Khim, S. Lee, J.-S. Yeo, N. Lu, M. J. Kim, H. C. Ko, T.-W. Kim, Y.-Y. Noh, and D.-Y. Kim, Org. Electron. 15, 1290 (2014). https://doi.org/10.1016/j.orgel.2014.02.027