• Title/Summary/Keyword: ordinary Portland cement (OPC)

Search Result 296, Processing Time 0.023 seconds

The Specification of OPC and Micro Cement using the Admixture (보통포틀랜드 시멘트와 초미립자 시멘트의 혼화재료 혼입시 특성)

  • Kim, Deuck-Mo;Lee, Wha-Young;Park, Won-Chun;Mun, Kyung-Ju;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.905-908
    • /
    • 2008
  • The existing concrete using ordinary portland cement has difficult in earth strength. so our study proceeded in using the micro cement. the result of experiment is follow that strength of micro cement was hard better than ordinary portland cement in early strength but flow of ordinary portland cement was better than micro cement. when OPC and MC mixed by fly-ash, flow degree is increased because of ball baring. fly-ash type wicked in early strength but flyash type hard than 28days strength of OPC. flow of GBFS is decreased, early strength is increased. when fly-ash mixed in MC, it was wicked strength.

  • PDF

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

Hydration and mechanical properties of Blended Cement added Bypass dust (By-pass Dust를 첨가한 혼합 시멘트의 수화 및 기계적 특성)

  • 성진욱;나종윤;김창은;이승헌;이봉한;김수룡;류한웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.33-39
    • /
    • 1999
  • This study was conducted to confirm the effect of bypass dust on the hydration and mechanical properties of the cement pastes and mortar obtained from ordinary Portland cement (OPC), OPC-slag and OPC-fly ash system. The rate of heat evolution is accelerated with the content of By-pass Dust(BD). total heat evolution increased because alkali-chlorides activated the hydration of blended cement. Compressive strength and bound water content show maximum value at 5wt% By-pass Dust(BD) on each curing time in ordinary Portland cement and slag blended cement. Ca(OH)2 content of Ordinary Portland Cement increased as the content of BD and curing time. In blended cement, the formation of Ca(OH)2 is active at early hydration stage. By pozzolanic reaction, the content of Ca(OH)2 is decreased as curing time goes by. According to the BD content stable chlorides complex of Friedel's salt (C3A·CaCl2·10H2O) is created. Due to the hydration activation effect of chlorides and alkali we observed Type II C-S-H, which developed into densest microstructure.

  • PDF

Statistical Analysis of the Physical Properties in a Slag-OPC-Gypsum System as a Compound Mixing Ratio

  • You, Kwang-Suk;Lee, Kyung-Hoon;Han, Gi-Chun;Kim, Hwan;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.477-482
    • /
    • 2007
  • The effect of the mixing ratio of compounds in a slag-OPC-Gypsum system on the physical properties of Slag cement is investigated in this study. $Na_2SO_4$ was used as an alkali activator. Blast furnace slag cement was prepared from a mixture of blast furnace slag, ordinary Portland cement and anhydride gypsum. The fluidity and the compressive strength according to the ratio of each mixture were analyzed in statistical analyses in order to discover the parameters influencing the fluidity and compressive strength. The results showed that the hydration of blast furnace slag took place with the addition of $Na_2SO_4$ and that column-crystalline ettringite was created as the main hydration product of the blast furnace slag. In addition, it was found that the compressive strength of blast furnace slag cement tends to increase when the ordinary Portland cement content is higher up to three days. However, it is known that the compressive strength tends to increase as the blast furnace slag content becomes higher with increases in the level of OPC after 28 days. As a result of this analysis, it is believed that the ordinary Portland cement content influences the initial compressive strength of blast furnace slag cement, and that in later days this is highly influenced by the slag content.

Experimental Approach on Sulfate Attack Mechanism of Ordinary Portland Cement Matrix: Part I. Sodium Sulfate Attack

  • Moon Han-Young;Lee Seung-Tae;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.557-564
    • /
    • 2004
  • This paper introduces a study carried out to investigate sodium sulfate attack caused by various reactive products. Experiments were performed on mortar and paste specimens made with ordinary Portland cement (OPC) conforming to KS L 5201 Type I. The water-cement ratios were varied from 0.35 to 0.55. It was found from the laboratory study that the water-cement ratio may be a key to control the deterioration of OPC matrix during sodium sulfate attack. Furthermore, X-ray diffraction (XRD) confirmed that ettringite, gypsum and thaumasite were the main products formed by sodium sulfate attack. These findings were well supported by thermal analysis through differential scanning calorimetry (DSC), and confirmed the long-term understanding that deterioration mechanism by sodium sulfate attack is a complicated process. Most importantly, deterioration due to sodium sulfate attack is characterized as the drastic reduction in compressive strength as well as the expansion (especially in cement matrix with a higher water-cement ratio).

Physical and Waterproof Properties of Mortar Using Cement Sludge Treated with Hydrofluosilicic Acid (규불화수소산 처리 시멘트 슬러지를 사용한 모르타르의 물성 및 방수 특성)

  • 김승문;이병기;김도수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.76-81
    • /
    • 1998
  • The physical properties of cement sludge treated with hydrofluosilicic acid were investigated. The compressive strength of cement mortar substituted cement sludge was decreased than that of OPC(ordinary portland cement) mortar. Cement sludge, for improving its physical properties, was treated with hydrofluosilicic acid. And compressive strength of cement mortar substituted TCS was greatly improved than that of OPC mortar. Particularly, cement mortar substituted TCS had the higher value in water-proofness than of OPC.

  • PDF

Effect of Hydration Heat and Drying Shrinkage of Mass Concrete Using Hwangtoh Binder (황토결합재를 이용한 매스콘크리트의 수화열과 건조수축 효과)

  • Kang, Sung-Soo;Lee, Seong-Lo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.649-652
    • /
    • 2008
  • In this paper, the applicability of hwangtoh, as an alternative of cement paste, is investigated for the solution of internal heat and shrinkage caused by the hydration of cement paste. Several small-sized specimens of hwangtoh and ordinary portland concrete(OPC) were compared as to compressive strength, heat of hydration, and shrinkage strain. Moreover, the applicability of mass structure was reviewed through the test of large-size specimens. The 28-day compressive strength of hwangtoh concrete(HBC), ranged 18 to 33 Mpa, can reach that of ordinary portland concrete. Not only the maximin internal temperature of HBC was read about 1/4 of OPC as it is cured, but also its drying shrinkage decreased as lower as 50% of OPC starting from 60 days. Therefore, hwangtoh binder is more favorable than cement one in the view of hydration heat and shrinkage under the construction of mass structures.

  • PDF

Effect of the Treated Amounts with Asphalt and Carbon Black on the Early Hydration and the Physical Properties of Portland Cement (Asphalt와 Carbon Black처리양이 포틀랜드 시멘트의 물리적 특성 및 초기수화에 미치는 영향)

  • 홍원표;조헌영;황의환
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.609-616
    • /
    • 1989
  • For the development of high durable portland cement, it was tested that the some physical properties of ordinary portland cements (OPC) treated with 0.3-1.5wt.% asphalt and 0.5-1.0wt.% carbon black. From the results, the contact angles of water against cements treated with more than 0.6wt.% asphalt were increased over 80 degrees, the initial and the final setting times of cement paste were delayed about 20min. according to the every 0.3wt.% increase of asphalt. The first and the second pick heights of the hydration curve of the cement were considerabely decreased and the induction period of that was increased. And so, the cumulative hydration heat of the cement which was treated with 0.6wt.% asphalt and 0.5wt.% carbon black was lower about 10cal/g than that of ordinary portland cement during 42 hydration times.

  • PDF

Properties of High Strength Concrete Incorporating Fine Blast Furnace Slag (고로 슬래그 미분말을 사용한 고강도 콘크리트의 특성)

  • Lee, Bong-Hak;Lee, Joo-Hyung;Hong, Chang-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.59-67
    • /
    • 1998
  • The object of this study is to investigate the strength characteristics and the freeze-thaw resistance of high strength concrete incorporating fine blast furnace slag. Major experimental variables were the water/cement ratio, maximum size of coarse aggregate, and cement types such as ordinary portland and slag cement. The results were as follows ; The workability of fresh concrete incorporating fine blast furnace slag was better than that of OPC(ordinary Portland cement) in terms of slump. The freeze-thaw resistance showed better than that of OPC, keeping more than 90% of relative modules of elasticity after 506 cycles and showing only a hair crack at surface without serious damage. Thus, the fine blast furnace slag might be recycled at concrete to make high strength concrete at fields.

  • PDF

Effects of Polycarboxylate Type Superplasticizer on the Hydration of Ordinary Portland Cement (보통포틀랜드시멘트의 수화 반응에 미치는 폴리카복실레이트계 고유동화제의 영향)

  • 류호석;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.417-424
    • /
    • 2004
  • Polycarboxylate type superplasticizers (PCA) with different graft chain (Polyethylene oxide) length were synthesized by Methoxypoly (ethyleneglycol)monomethacrylate (MPEGMAA) and methacrylic acid (MAA). The effects of PCA on the hydration of Ordinary Portland Cement (OPC) were investigated by Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) techniques. The effect of graft chain length of PCA on the hydration of OPC was different at early age, but, at long age, was similar. The ratio of relative peak intensity, (I[001]/I[101]), of Ca(OH)$_2$ compared with OPC also was reduced by PCA addition.