• Title/Summary/Keyword: orbital

Search Result 1,623, Processing Time 0.027 seconds

A Statistical Analysis of Superior Orbital Fissure Width in Korean Adults using Computed Tomography Scans

  • Park, Yongsik;Kim, Youngjoon
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.2
    • /
    • pp.89-91
    • /
    • 2017
  • Background: The superior orbital fissure is a small area that connects the middle cranial fossa and the orbit. Many studies have measured the size of the superior orbital fissure. However, there is no standard value for the size of the superior orbital fissure. Therefore, we conducted this study to provide the average size of the superior orbital fissure in Korean adults. Methods: We measured the widths of the superior orbital fissures of 142 patients using computed tomography scans. Because the width of the superior orbital fissure varies at different locations, we measured the superior orbital fissure width at the level of the optic canal. Results: In the males, the width of the superior orbital fissure on both sides was $3.79{\pm}0.93mm$, and these values were $3.79{\pm}0.96mm$ for the left side and $3.783{\pm}0.92mm$ for the right side. In the females, the widths of the superior orbital fissures were $3.62{\pm}1.35mm$ on the left side, $3.69{\pm}1.18mm$ on the right side, and $3.65{\pm}1.26mm$ across both sides. Conclusion: There were no significant differences between the males and females or between the left and right sides. The present study suggests that we may accept the hypothesis that a congenitally narrow superior orbital fissure may be a risk factor for the superior orbital fissure syndrome. Surgeons should take precaution with patients who have narrow superior orbital fissures during the perioperative period.

Reconstruction of the orbital wall using superior orbital rim osteotomy in a patient with a superior orbital wall fracture

  • Heo, Jae Jin;Chong, Ji-Hun;Han, Jeong Joon;Jung, Seunggon;Kook, Min-Suk;Oh, Hee-Kyun;Park, Hong-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.42.1-42.5
    • /
    • 2018
  • Background: Fractures of the orbital wall are mainly caused by traffic accidents, assaults, and falls and generally occur in men aged between 20 and 40 years. Complications that may occur after an orbital fracture include diplopia and decreased visual acuity due to changes in orbital volume, ocular depression due to changes in orbital floor height, and exophthalmos. If surgery is delayed too long, tissue adhesion will occur, making it difficult to improve ophthalmologic symptoms. Thus, early diagnosis and treatment are important. Fractures of the superior orbital wall are often accompanied by skull fractures. Most of these patients are unable to perform an early ocular evaluation due to neurosurgery and treatment. These patients are more likely to show tissue adhesion, making it difficult to properly dissect the tissue for wall reconstruction during surgery. Case presentation: This report details a case of superior orbital wall reconstruction using superior orbital rim osteotomy in a patient with a superior orbital wall fracture involving severe tissue adhesion. Three months after reconstruction, there were no significant complications. Conclusion: In a patient with a superior orbital wall fracture, our procedure is helpful in securing the visual field and in delamination of the surrounding tissue.

Orbital wall restoring surgery with resorbable mesh plate

  • Joo, Jae Doo;Kang, Dong Hee;Kim, Hyon Surk
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.4
    • /
    • pp.264-269
    • /
    • 2018
  • Background: Orbital resorbable mesh plates are adequate to use for isolated floor and medial wall fractures with an intact bony buttress, but are not recommended to use for large orbital wall fractures that need load bearing support. The author previously reported an orbital wall restoring surgery that restored the orbital floor to its prior position through the transnasal approach and maintained temporary extraorbital support with a balloon in the maxillary sinus. Extraorbital support could reduce the load applied on the orbital implants in orbital wall restoring surgery and the use of resorbable implants was considered appropriate for the author's orbital wall restoring technique. Methods: A retrospective review was conducted of 31 patients with pure unilateral orbital floor fractures between May 2014 and May 2018. The patients underwent transnasal restoration of the orbital floor through insertion of a resorbable mesh plate and maintenance of temporary balloon support. The surgical results were evaluated by the Hertel scale and a comparison of preoperative and postoperative orbital volume ratio (OVR) values. Results: The OVR decreased significantly, by an average of 6.01% (p<0.05) and the preoperative and postoperative Hertel scale measurements decreased by an average of 0.34 mm with statistical significance (p<0.05). No complications such as buckling or sagging of the implant occurred among the 31 patients. Conclusion: The use of resorbable mesh plate in orbital floor restoration surgery is an effective and safe technique that can reduce implant deformation or complications deriving from the residual permanent implant.

Reconstruction of the Inferior Orbital Wall with Simplified Simulation Technique in Case of the Fracture Extending to the Posterior Orbital Floor

  • Kim, Kyu Nam;Kim, Hoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.80-83
    • /
    • 2016
  • A 37-year-old male was assaulted and complained of severe periorbital swelling. Physical examination revealed that there were limitation of eyeball movement on upper gaze, diplopia, and hypoesthesia on the infraorbital nerve innervating region. Three-dimensional (3D) computed tomography (CT) of facial bone exhibited the fracture of orbital floor accompanying the significant amount of orbital contents' herniation extending to the far posterior part. To recover the orbital volume and restore orbital floor without threatening the optic nerve, preoperative simplified simulation was applied. The posterior margin of the fractured orbit was delineated with simulation technique using cross-linkage between the coronal and sagittal sections based on the referential axial view of the CT scans. Dissection, reduction of orbital contents, and insertion of the absorbable mesh plate molded after the prefabricated template by the simulation technique was performed. Extensive orbital floor defect was successfully reconstructed and there were no serious complications. The purpose of this report is to emphasize the necessity of preoperative simulation in case of restoring the extensive orbital floor defect.

Treatment strategy for orbital fractures (안와 골절의 치료 전략)

  • Jung, Seunggon
    • The Journal of the Korean dental association
    • /
    • v.54 no.10
    • /
    • pp.799-810
    • /
    • 2016
  • Orbital fractures have a significant portion in facial bone trauma. The important thing in treatment of orbital fractures is variable depending on the patient. Reconstruction of orbital wall demands an understanding of the anatomy and function of the orbit, including the orbital tissues, and the approacheds, materials, and methods available.

  • PDF

MEAN ORBITAL ELEMENTS FOR GEOSYNCHRONOUS ORBIT -II -Orbital inclination, longitude of ascending node, mean longitude- (정지위성 궤도의 평균 궤도 요소 - II -궤도 경사각, 승교점 경도, 위성 경도-)

  • 최규홍;박종옥;문인상;배성구
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.11-21
    • /
    • 1990
  • The osculating orbital elements include the mean, secular, long period, and short period terms. The iterative algorithm used for conversion of osculating orbital elements to mean orbital elements is described. The mean orbital elements of $W_c,\;W_s$, and L are obtained.

  • PDF

EXPANSIVITY ON ORBITAL INVERSE LIMIT SYSTEMS

  • Chu, Hahng-Yun;Lee, Nankyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.157-164
    • /
    • 2019
  • In this article, we study expansiveness of the shift maps on orbital inverse limit spaces which consist of two cross bonding mappings. On orbital inverse limit systems, horizontal directions express inverse limit systems and vertical directions mean orbits based on horizontal axes. We characterize the c-expansiveness of functions on orbital spaces. We also prove that the c-expansiveness of the functions is equivalent to the expansiveness of the shift maps on orbital inverse limit spaces.

Open Reduction and Internal Fixation (ORIF) of Trapdoor Orbital Floor Blowout Fracture with Absorbable Mesh Plate (뚜껑문 안와저 골절에 있어서 망상 흡수성 판을 이용한 관혈적 정복술 및 내고정술)

  • Kwon, Yu-Jin;Kim, Ji-Hoon;Hwang, Jae-Ha;Kim, Kwang-Seog;Lee, Sam-Yong
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.619-625
    • /
    • 2010
  • Purpose: Trapdoor orbital blowout fracture is most common in orbital blowout fracture. Various materials have been used to reconstruct orbital floor blowout fracture. Absorbable alloplastic implants are needed because of disadvantages of nonabsorbable alloplastic materials and donor morbidity of autogenous tissue. The aim of the study is to evaluate usefulness of absorbable mesh plate as a reconstructive material for orbital blowout fractures. Methods: From December 2008 to October 2009, 18 trapdoor orbital floor blowout fracture patients were treated using elevator fixation, depressor fixation, or elevatordepressor fixation techniques with absorbable mesh plates and screw, depending on degree of orbital floor reduction, because absorbable mesh plates are less rigid than titanium plates and other artificial substitutes. Results: Among 18 patients, 5 elevator fixation, 4 depressor fixation, and 9 elevator and depressor fixation technique were performed. In all patients, postoperative computed tomographic (CT) scan showed complete reduction of orbital contents and orbital floor, and no displacement of bony fragment and mesh plate. Mean follow-up was 10 months. There were no significant intraoperative or postoperative complications. Conclusion: Three different techniques depending on the degree of orbital floor reduction are useful for open reduction and internal fixation of trapdoor orbital floor blowout fracture with absorbable mesh plates.

Correction of Persistent Enophthalmos after Surgical Repair of Blow Out Fracture Using Orbital Decompression Technique of Contralateral Eye (안와골파열골절 정복술 후 지속되는 안구함몰 환자에서 정상측 안구의 안구 감압술의 치험례)

  • Lee, Jun-Ho;Park, Won-Yong;Nam, Hyun-Jae;Kim, Yong-Ha
    • Archives of Craniofacial Surgery
    • /
    • v.9 no.2
    • /
    • pp.101-104
    • /
    • 2008
  • Purpose: Diplopia and cosmetically unacceptable enophthalmos are the major complications of blow out fracture. Prolapse of orbital tissue into the sinuses, enlarged orbital volume, atrophy of orbital fat and loss of support of orbital walls play a role in the pathogenesis of enophthalmos. To correct post-traumatic enophthalmos, freeing of incarcerated orbital contents combined with reduction of bony orbital volume and reconstruction of suspensory support of globe is necessary. But remained enophthalmos after surgical treatment is difficult to correct completely. In this case, the authors performed implant insertion for affected orbit and endoscopic orbital decompression for unaffected orbit for correction of late enophthalmos. Method: We reviewed a girl patient with right inferomedial orbital wall blow out fracture, right zygoma fracture treated at our hospital for correction of enophthalmos. An 18-year-old female had sustained posttraumatic enopthalmos. Two surgical management was performed for correction blow out fracture at the other hospital. But residual diplopia, enophthalmos, cheek drooping were found. And then she transferred to our hospital. She had severe enophthalmos(5 mm) also had diplopia and extraocular muscle limitation. We performed operation for correction of enophthalmos. After operation, she showed minimal improvement of diplopia and enophthalmos(3 mm). The authors make plan for operation for correction enophthalmos due to cosmetical improvement. Implant insertion was performed for affected orbit. For unaffected orbit, nasoendoscopic medial orbital wall decompression was proceeded. Result: Correction of enophthalmos was found after operation and was maintained for nine years follow-up. Patient expressed satisfaction for the result. Conclusion: To correct persistant enophthalmos, we could have satisfactory result with orbital wall reconstruction on affected eye and decompression on unaffected eye.

Two-Year Follow-up on the Use of Absorbable Mesh Plates in the Treatment of Medial Orbital Wall Fractures

  • You, Jae-Pil;Kim, Deok-Woo;Jeon, Byung-Joon;Jeong, Seong-Ho;Han, Seung-Kyu;Dhong, Eun-Sang;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.728-734
    • /
    • 2013
  • Background Absorbable materials offer many advantages in the reconstruction of orbital walls; however, the possibility of postoperative enophthalmos after complete absorption cannot be excluded. We evaluated the postoperative results of absorbable mesh plates used as onlay implanting on the medial orbital wall to determine whether they are suitable for medial orbital wall reconstruction. Methods The study included 20 patients with medial orbital wall fractures who were followed up for more than 2 years postoperatively. We used absorbable mesh plates in all of the patients. We measured the following: the changes in the expanded orbital volume by comparing the preoperative and postoperative computed tomography (CT) scans and the degree of clinical enophthalmos. Results There were no major complications associated with the use of absorbable materials such as infection, migration, or extrusion of mesh plates during the long-term follow-up. The orbital volumetric changes between the preoperative and postoperative CT scans were not statistically significant. However, the expanded orbital volume was not related to the degree of clinical enophthalmos. Conclusions The reconstructed orbital wall may provide supportive scar tissue to the orbital contents even after the absorbable materials have dissolved completely. Absorbable mesh plates could be another option for the reconstruction of the medial orbital wall.