• Title/Summary/Keyword: oral imaging system

Search Result 154, Processing Time 0.022 seconds

Determination of the adequate resolution and compression method in teleradiology (원격 진단 시스템에서 의료영상의 적절한 해상도 및 압축방법 결정에 관한 연구)

  • Kim Eun-Kyung;Hong Byeong-Hee
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.26 no.2
    • /
    • pp.191-200
    • /
    • 1996
  • This study was performed to determine the adequate resolution and compression method in teleradiology. A digital imaging system using Machintosh IT ci computer, 15' Sony high resolution RGB monitor, Umax Power look flatbed scanner with transparency unit and 12 panoramic radiographs were used. The results were as follows : 1. Relative detectability at the group scanned by 30ddpi, 600dpi and 1200dpi was same as those at the real panoramic radiographs. 2. Perceivable image quality degradation was found at the 25% of middle quality of JPEG compression. But those were not diagnostically significant. 3. Perceivable image quality degradation was found at the 100% of low quality of JPEG compression. And 8cases among them were diagnostically significant. On the basis of the above results, it is considered that the adequate resolution in scanning radiographs for teleradiology is 300dpi and compression method is the middle quality of JPEG compression.

  • PDF

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Functional Anatomy of the Temporomandibular Joint and Pathologic Changes in Temporomandibular Disease Progression: A Narrative Review

  • Yeon-Hee Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.14-35
    • /
    • 2024
  • The temporomandibular joint (TMJ) is one of the most unique joints in the human body that orchestrates complex movements across different orthogonal planes and multiple axes of rotation. Comprising the articular eminence of the temporal bone and the condylar process of the mandible, the TMJ integrates five major ligaments, retrodiscal tissues, nerves, and blood and lymph systems to facilitate its function. Cooperation between the contralateral TMJ and masticatory muscles is essential for coordinated serial dynamic functions. During mouth opening, the TMJ exhibits a hinge movement, followed by gliding. The health of the masticatory system, which is intricately linked to chewing, energy intake, and communication, has become increasingly crucial with advancing age, exerting an impact on oral and systemic health and overall quality of life. For individuals to lead a healthy and pain-free life, a comprehensive understanding of the basic anatomy and functional aspects of the TMJ and masticatory muscles is imperative. Temporomandibular disorders (TMDs) encompass a spectrum of diseases and disorders associated with changes in the structure, function, or physiology of the TMJ and masticatory system. Functional and pathological alterations in the TMJ and masticatory muscles can be visualized using various imaging modalities, such as cone-beam computed tomography, magnetic resonance imaging, and bone scans. An exploration of potential pathophysiological mechanisms related to the TMJ anatomy contributes to a comprehensive understanding of TMD and informs targeted treatment strategies. Hence, this narrative review presents insights into the fundamental functional anatomy of the TMJ and pathological changes that evolve with TMD progression.

Deep learning system for distinguishing between nasopalatine duct cysts and radicular cysts arising in the midline region of the anterior maxilla on panoramic radiographs

  • Yoshitaka Kise;Chiaki Kuwada;Mizuho Mori;Motoki Fukuda;Yoshiko Ariji;Eiichiro Ariji
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.33-41
    • /
    • 2024
  • Purpose: The aims of this study were to create a deep learning model to distinguish between nasopalatine duct cysts (NDCs), radicular cysts, and no-lesions (normal) in the midline region of the anterior maxilla on panoramic radiographs and to compare its performance with that of dental residents. Materials and Methods: One hundred patients with a confirmed diagnosis of NDC (53 men, 47 women; average age, 44.6±16.5 years), 100 with radicular cysts (49 men, 51 women; average age, 47.5±16.4 years), and 100 with normal groups (56 men, 44 women; average age, 34.4±14.6 years) were enrolled in this study. Cases were randomly assigned to the training datasets (80%) and the test dataset (20%). Then, 20% of the training data were randomly assigned as validation data. A learning model was created using a customized DetectNet built in Digits version 5.0 (NVIDIA, Santa Clara, USA). The performance of the deep learning system was assessed and compared with that of two dental residents. Results: The performance of the deep learning system was superior to that of the dental residents except for the recall of radicular cysts. The areas under the curve (AUCs) for NDCs and radicular cysts in the deep learning system were significantly higher than those of the dental residents. The results for the dental residents revealed a significant difference in AUC between NDCs and normal groups. Conclusion: This study showed superior performance in detecting NDCs and radicular cysts and in distinguishing between these lesions and normal groups.

Implementation of oral patient management system using smartphone and embedded imaging module (스마트폰과 임베디드 촬영 모듈을 활용한 구강 환자 관리 시스템 구현)

  • Lee, Hyoun-sup;Youn, Joo-sang;Kim, Jin-deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.581-586
    • /
    • 2018
  • A common characteristic of many patients whose illness is getting worse is that they miss the treatment red flag. When high subjective symptoms appear or there is no strong pain, this problem arises because it is reluctant to visit the hospital. Gingivitis causes bleeding from the gums in the early and mid-term, and shows mild symptoms of tooth collapse. When treatment is done at this point, it shows a very high effect. However, when you miss the timing of treatment you will have a situation where you can't eat food by causing serious problems in the health of the gums and oral cavity. In this paper, the patient's periodontal image is photographed with a smartphone and transmitted in real time. This is done by the doctor in charge. Then, we propose a design of a patient management system that provides information on the current situation to the patient so as not to miss the timing of treatment.

Multiple myeloma presenting with a maxillary lesion as the first sign

  • Ramaiah, Kiran Kumar Kotagudda;Joshi, Vajendra;Thayi, Shilpa Ravishankar;Sathyanarayana, Pathalapate;Patil, Prashant;Ahmed, Zaheer
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • Multiple myeloma is a clonal neoplastic proliferation of terminally differentiated B-lymphocytes involving the skeletal system in a multifocal fashion. Its oral manifestations are less common in the maxilla than in the mandible due to the lower amount of hemopoietic bone marrow in the maxilla. We report the case of a 50-year-old man who presented with a mass in the left maxillary alveolar region with tooth mobility. The mass had become enlarged after the teeth were extracted 15 days previously. Radiographs demonstrated multiple punched-out radiolucent lesions in the skull and pelvic region. Computed tomography images showed a soft tissue density mass in the left maxilla, eroding the floor and walls of the maxillary sinus. Although several analytical techniques were used to characterize the lesion, it was finally confirmed as multiple myeloma through immunohistochemistry.

Tissue Level Based Deep Learning Framework for Early Detection of Dysplasia in Oral Squamous Epithelium

  • Gupta, Rachit Kumar;Kaur, Mandeep;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Deep learning is emerging as one of the best tool in processing data related to medical imaging. In our research work, we have proposed a deep learning based framework CNN (Convolutional Neural Network) for the classification of dysplastic tissue images. The CNN has classified the given images into 4 different classes namely normal tissue, mild dysplastic tissue, moderate dysplastic tissue and severe dysplastic tissue. The dataset under taken for the study consists of 672 tissue images of epithelial squamous layer of oral cavity captured out of the biopsy samples of 52 patients. After applying the data pre-processing and augmentation on the given dataset, 2688 images were created. Further, these 2688 images were classified into 4 categories with the help of expert Oral Pathologist. The classified data was supplied to the convolutional neural network for training and testing of the proposed framework. It has been observed that training data shows 91.65% accuracy whereas the testing data achieves 89.3% accuracy. The results produced by our proposed framework are also tested and validated by comparing the manual results produced by the medical experts working in this area.

The elimination of the linear artifacts by the metal restorations in the three dimensional computed tomographic images using the personal computer and software (개인용 컴퓨터와 소프트웨어를 이용한 3차원 전산화단층영상에서의 금속 수복물에 의한 선상 오류의 제거)

  • Park Hyok;Lee Hee-Cheol;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.151-159
    • /
    • 2003
  • Purpose: The purpose of this study is to evaluate the effectiveness and usefulness of newly developed personal computer-based software to eliminate the linear artifacts by the metal restorations. Materials and Methods: A 3D CT image was conventionally reconstructed using ADVANTAGE WINDOWS 2.0 3D Analysis software (GE Medical System, Milwaukee, USA) and eliminated the linear artifacts manually. Next, a 3D CT image was reconstructed using V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea) and the linear artifacts eliminated manually in the axial images by a skillful operator using a personal computer. A 3D CT image was reconstructed using V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea) and the linear artifacts were removed using a simplified algorithm program to eliminate the linear artifacts automatically in the axial images using a personal computer, abbreviating the manual editing procedure. Finally, the automatically edited reconstructed 3D images were compared to the manually edited images. Results and Conclusion: We effectively eliminated the linear artifacts automatically by this algorithm, not by the manual editing procedures, in some degree. But programs based on more complicated and accurate algorithms may lead to a nearly flawless elimination of these linear artifacts automatically.

  • PDF

Development and application of stent-based image guided navigation system for oral and maxillofacial surgery (구강외과 수술용 스텐트 기반 영상유도 수술 시스템의 개발)

  • Lee, Woo-Jin;Kim, Dae-Seung;Yi, Won-Jin;Lee, Sam-Sun;Choi, Soon-Chul;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Myung-Jin;Lee, Jee-Ho
    • Imaging Science in Dentistry
    • /
    • v.39 no.3
    • /
    • pp.149-156
    • /
    • 2009
  • Purpose : The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. Materials and Methods : We devised a patient-specific stent for patient-to-image registration and navigation. Three-dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. Results : The accuracy over 8 anatomical landmarks showed an overall mean of $0.56{\pm}0.16\;mm$. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. Conclusion : The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  • PDF

Clinical usefulness of teleradiology in general dental practice

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • Purpose: This study was performed to investigate the clinical usefulness of teleradiology in general dental practice. Materials and Methods: Two hundred and seventy five cases were submitted for inquiry to the case presentation board of the website of The Korean Academy of Oral and Maxillofacial Radiology for a 5 year periods. The diagnosis results of those cases were analyzed according to the disease classification, the correlation with the patient's chief complaint, the necessity of additional examinations or treatments, the image modalities, and the number of dentists inquiring. Results: Differential diagnoses of normal anatomic structures were the most frequently submitted cases, covering 15.6% of all cases. Among 275 cases, 164 cases required no additional treatments or examinations. Panoramic radiographs were the most frequently submitted images, accounting for 248 inquiries. The 275 cases were submitted by 96 dentists. Fifty-two dentists wrote one inquiry, and 44 inquired 2 or more times. The average inquiry number of the latter group was 5.0 cases. Conclusion: A teleradiology system in general dental practice could be helpful in the differential diagnosis of common lesions and reduce unnecessary costs.