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I. INTRODUCTION  

India has one of the highest rates in oral cancer in the 

world partly attributed to high prevalence of tobacco 

chewing. In parallel to the increase in Oral Cancer, border-

line malignant lesions which range from epithelial 

dysplasia to intra epithelial carcinoma have also increased 

in numbers [1]. In the past few years deep learning has 

proven to be efficient in many classification problems 

especially in medical imaging data. In the last few years a 

large number of machine learning based frameworks 

especially deep learning were employed by researchers to 

detect and classify the oral cancer. These deep learning 

based systems have proved to be very efficient and has 

achieved accuracy almost equal to the specialist 

pathologist that does its work manually and has ample of 

experience in his field [2]. 

The term dysplasia was introduced by Reagon in 1958 

in a study where he described the features of dysplasia [3]. 

In medical terms dysplasia means an abnormal 

development in cells while histomorphologically any 

cellular or structural change in epithelium is dysplasia. 

Major pathological microscopic changes at cellular level 

as well as tissue level in dysplastic tissue are given in 

Table 1: [4]. 

Dysplasia is a part of the pathway to malignancy. 

Dysplastic cells cannot be called malignant until and 

unless it invades the connective tissue or metastasize. The 

dysplastic cells can be classified into mild, moderate and 

severe dysplasia. 

 The progressive change in dysplastic cells from mild to 

moderate and then from moderate to severe can be seen in 

the epithelium. The invasive activity of dysplastic cells 

starts from the lower layer, then progress to the middle 

layer and finally full thickness of epithelium. Next, it will 

invade the basement membrane [5].    

 

 

 

 

 

 

Fig. 1. Showing the progression of dysplasia from normal 

epithelium to in-citu carcinoma. 

 

 

Tissue Level Based Deep Learning Framework for Early Detection of  

Dysplasia in Oral Squamous Epithelium 

Rachit Kumar Gupta1*, Mandeep Kaur2, Jatinder Manhas3 

 

ABSTRACT 

Deep learning is emerging as one of the best tool in processing data related to medical imaging. In our research work, we have proposed 

a deep learning based framework CNN (Convolutional Neural Network) for the classification of dysplastic tissue images. The CNN has 

classified the given images into 4 different classes namely normal tissue, mild dysplastic tissue, moderate dysplastic tissue and severe 

dysplastic tissue. The dataset under taken for the study consists of 672 tissue images of epithelial squamous layer of oral cavity captured out 

of the biopsy samples of 52 patients. After applying the data pre-processing and augmentation on the given dataset, 2688 images were 

created. Further, these 2688 images were classified into 4 categories with the help of expert Oral Pathologist. The classified data was 

supplied to the convolutional neural network for training and testing of the proposed framework. It has been observed that training data 

shows 91.65% accuracy whereas the testing data achieves 89.3% accuracy. The results produced by our proposed framework are also tested 

and validated by comparing the manual results produced by the medical experts working in this area. 

Key words: oral cancer, oral epithelial tissue, oral dysplasia, deep learning. 

Manuscript received April 30, 2019; Revised June 03; Accepted June 05, 2019. (ID No. JMIS-19M-05-018)  

Corresponding Author (*):  Rachit Kumar Gupta, Department of Computer Science and IT, University of Jammu, 

Jammu, J&K, India, gupta.rachit1990@gmail.com. 
1Department of Computer Science and IT, University of Jammu, Jammu, J&K, India, gupta.rachit1990@gmail.com. 
2Mandeep Kaur, Department of Oral Pathology, Indira Gandhi Govt. Dental College, Jammu, J&K, India,  

dr_mandeep_kaur@yahoo.com 
3Jatinder Manhas, Department of Computer Science & IT, Bhaderwah Campus, University of Jammu, Jammu, J&K, 

India, manhas.jatinder@gmail.com   

mailto:gupta.rachit1990@gmail.com


Tissue Level Based Deep Learning Framework for Early Detection of Dysplasia in Oral Squamous Epithelium 

 

82 

 

   

As the dysplasia arises in the basal layer of the epithelium 

and extends, with progression, to the upper epithelial 

layers, the scheme classifies mild dysplasia as 

involvement of the lower third of the epithelium only, 

moderate dysplasia as extension to the middle third, and 

severe dysplasia as extension to the superficial third of the 

epithelium [6].  

  Early detection plays a key role in cancer diagnosis and 

can improve long-term survival rates. Medical imaging is 

a very important technique for early cancer detection and 

diagnosis. As is well known, medical imaging has been 

widely employed for early cancer detection, monitoring, 

and follow-up after the treatments [7].  

This paper aims to classify oral dysplasia by using popular 

deep learning technique namely Convolutional Neural 

Network. Since our data is in image format that’s why 

CNN (Convolutional Neural Network) is preferable over 

other deep learning techniques. Recent studies show that 

CNN achieve promise performance in cancer detection 

and diagnosis. [8, 9].  

 

II. LITERATURE REVIEW 
 

This section is intended to provide a brief review of 

recent studies on applying deep learning for early cancer 

detection, cancer diagnosis and prognosis. 

In recent years, a bunch of papers has been published 

about the application of deep learning in cancer detection 

and diagnosis. In [10], Gustav Forslid et al. have used 

CNN on oral cancer dataset. Two different CNN models 

were used namely ResNet and VGG. Results were very 

good as compared to other image diagnosis techniques. In 

[11], Geert Litjens et al. have presented Prostate cancer 

identification in biopsy specimens and breast cancer 

metastasis detection in sentinel lymph nodes using deep 

learning and concluded that deep learning improves the 

accuracy of prostate cancer diagnosis and breast cancer 

staging. Authors employed CNN. In [12], Albayrak et al. 

developed a deep learning based feature extraction 

algorithm to detect mitosis in breast histopathological 

images. In the proposed algorithm, the CNN model was 

used to extract features which were used to train a support 

vector machine (SVM) for the detection of mitosis. In [13], 

Krizhevsky et al. used AlexNet to construct a CNN model 

to classify benign or malignant tumors from the breast 

histopathological images. In [14], Akshay Iyer et al. have 

used the pre-trained model, VGG19 to extract information  

from the pathological images specific for lung cancer. A 

model consisting of deep convolution network-based 

image classification has been proposed for predictions on 

mutations in genes signature information of lung cancer 

among Indian populations. In [15], Bassma El-Sherbiny et 

al. propose - Brain/Lung/Breast (BLB) automated 

detection system. It precisely predicts the occurrence of 

cancer and segments the expected region of tumor/cancer 

in MRI/CT scan/Mammography images. This system 

proposes different classification techniques including 

Support Vector Machine (SVM), ExtraTrees and 

convolutional neural network (CNN). CNN performed 

exceptionally well in the detection of lung cancer. In [16], 

Chen et al. proposed a deep cascade network for mitosis 

detection in breast histology slides. They first trained a 

fully connected network model to extract mitosis 

candidates from the whole histology slides and then fine-

tuned a CaffeNet model for the classification of mitosis. 

Three networks with different configurations of fully 

connected layers were trained and the scores were 

averaged to generate the final output. In [17], Ida 

Arvidsson et al. compared two different techniques; by 

training the networks using color augmentation and by 

using digital stain separation using an auto encoder. The 

author achieved accuracies of 95% for classification of 

benign versus malignant tissue and 81% for Gleason 

grading for data from the same site as the training data. In 

[18], Albarqouni et al. explored deep CNN in a biomedical 

context, a multiscale CNN architecture was developed 

with an aggregation layer was introduced after the softmax 

layer to aggregate the prediction results with the 

annotation results from multiple participation. In [19], 

Sawon Pratiheret al. have deployed deep learning 

framework to classify elastic scattering spectra of 

biological tissues into normal and cancerous ones. Authors 

experimented to show the superiority of the convolutional 

neural network extracted deep features over classical 

handcrafted biomarkers. The proposed method employs 

elastic scattering spectra of the tissues as input to CNN. In 

[20], Wichakam et al. proposed a combined system 

consisting of CNN and SVM for mass detection on digital 

mammograms. CNN was used on mammographic patches 

to get the high-level feature representation of the image. 

This high-level feature set was used as input to SVM for 

classification of mammograms. In [21], Xu et al. proposed 

a stacked sparse auto-encoder based algorithm to classify 

Table 1: Pathological microscopic changes at the cellular level and tissue level in dysplasia 

Cellular level changes Tissue level changes 

• Abnormal variation in cell size (Anisocytosis) 

• Increased nuclear/cytoplasmic ratio  

• Abnormal mitotic figures (abnormal in shape or  

location)  

• Enlarged nuclei and cells 

• Abnormal variation in nuclear size 

(anisonucleosis) 

• Increased number and size of nucleoli 

• Loss of polarity 

• Disordered maturation from basal to squamous 

cells 

• Increased cellular density 

• Dyskeratosis (premature keratinization and keratin 

pearls deep in epithelium) 

• Secondary extensions (nodules) on rete tips 
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nuclei in breast cancer histopathology. In [22], Tian Xia et 

al. proposed a system of tumor classification by pre-

training a CNN from samples of different tissue types in 

histopathological images, then fine-tuning the obtained 

pre-trained on a particular tissue type. CNN showed 

improvement over training from scratch with limited data. 

In [23], Mina Khoshdeli et al. applied convolutional 

neural networks for grading of the tumor and 

decomposing tumor architecture from H&E stained 

histology sections of the kidney. In [24], Xu Y et al. 

proposed deep convolutional neural network activation 

features to perform classification, segmentation and 

visualization in large-scale tissue histopathology 

images. Authors used a pre-trained ImageNet network on 

features extracted by CNN. 

III. MATERIAL AND METHODOLOGY 

In this study we have taken data of 52 patients suffering 

from oral dysplasia. 2 H&E stained histopathological 

samples are taken from each patient. The data is taken 

from Indira Gandhi Govt. Dental College and Hospital, 

Jammu, India. Based on CIN (Cervical intraepithelial 

neoplasia) classification, these data samples were 

classified into 4 different classes namely normal, mild 

dysplasia, moderate dysplasia and severe dysplasia.  

There are a total of 2688 images in our dataset. 663 

images belonging to a normal class, 681 belonging to mild 

dysplasia, 675 belonging to moderate dysplasia and 669 

belonging to severe dysplasia.     

CNN was created and trained from scratch. Python 

language along with the Tensor flow and Keras deep 

learning libraries were used to build the CNN model.  

  

 
 Fig. 2. Showing Basic structure of a CNN. 

 

Dataset was divided into training set and testing set in a 

70:30 ratio respectively. The training set contained 1882 

images and testing set contained 806 images. The research 

methodology diagram is given in figure 4: 

 

 
Fig. 3. CNN Model Layer wise. 

 

   
Fig. 4. Research methodology diagram. 

 

IV. RESULTS AND DISCUSSION 

The classification of the dysplastic tissue was carried out 

by CNN into 4 different classes.  

When CNN was trained on training data it gave an 

accuracy of 91.65% and in testing, it gave an accuracy of 

89.3%. Our CNN was trained for a total of 75 epochs. The 

Accuracy and loss of model is given in figure 5(a) and 

figure 5(b) respectively. 
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           (a) Model Accuracy 

 
 (b) Model Loss 

Fig. 5. Training results. 

 

Our proposed CNN produced the following output of 

classified tissue images along with labels: 

 

 
Fig. 6. Predicted Tissue images along with labels. 

 

The confusion matrix obtained from the experiment is 

given in figure 3: 

 
Fig. 7. Confusion matrix for testing of 806 oral epithelial tissue 

images. 

 

Precision, recall, f1-score for each class and average of all 

classes are given in Table 2.  

 
Table 1. Precision, Recall and f1-score of testing. 

Class  Precision Recall F1-score 

Normal 0.93       0.89       0.91        

Mild 0.83       0.89       0.86        

Moderate 0.86       0.87       0.87        

Severe 0.95       0.92       0.93     

Average 0.89       0.89      0.89       

 

V. CONCLUSION 
Our proposed deep learning system although not in real 

time but produced promising results. Our proposed deep 

learning system has achieved higher accuracies almost as 

the experienced specialist concerned oral pathologist. 

  

VI. FUTURE SCOPE 

In the future, we will increase the dataset size to input 

more and more training data so that our proposed deep 

learning model will learn more efficiently. Also, we will 

fine-tune our deep learning model so that it can achieve 

more accuracy in predicting the true label.  
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