• Title/Summary/Keyword: optimum maintenance

Search Result 377, Processing Time 0.02 seconds

A CLINICAL STUDY ON THE MAINTENANCE OF LIGHT INTENSITY OF VISIBLE-LIGHT CURING MACHINES FOR THE POLYMERIZATION OF COMPOSITE RESINS (복합레진 중합용 가시광선 광중합기의 적정 광강도 유지를 위한 임상적 고찰)

  • Lee, Dong-Soo;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.363-368
    • /
    • 2001
  • It is well known that numerous factors influence the light output of curing units, but many dentists are un aware that the output of their curing lights are inadequate. This study was conducted to evaluate the light in tensity of visible-light curing units in some private dental clinics and hospital dental clinics. In order to determine the maximum light intensity of the curing units, lamps, filters and fiber optic bundles, they were replaced with new ones and light intensity was remeasured. Light intensity was measured by employing a digital radiometer (EFOS model #8000, USA). Light intensity ranged in $29\sim866mW/cm^2$ (below $150mW/cm^2$ ; 17.8%, $150\sim300mW/cm^2$ : 46.6%, above $300mW/cm^2$ ; 35.6%). The replacement of the components increased the light intensity, with maximum increases of 94.8% for lamps, 82.3% for filters, 200.8% for fiber optics and 361.5% for all three parts. According to the manufacturer of radiometer, curing light is considered as unsuitable for use with a reading of above $300mW/cm^2$ by the radiometer. Applying these criteria to the present study, 64.4% of the curing units required repair or replacement. The results of this study indicated that the light intensities of the curing units used in dental practice were lower than optimum level.

  • PDF

An Optimization of a Walkway Block Structure for Rainwater Harvesting (빗물저장 및 활용을 위한 보도블럭구조의 최적화)

  • Cho, Taejun;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.40-47
    • /
    • 2018
  • Porous walkway blocks are constructed for the purpose already, but reserved water is easily consumed due to the bigger permeability than necessary. Furthermore, porous structure reduces the strength of blocks, which resulting cracking and settlements in walkways. In this study, we suggested a solution for given problems by determination for the location of minimum principal stress in walkway blocks against moving foot loads in order to design and verifying the determined location of minimum principal stress. An optimum design with a verification example for determined location of minimum principal stress have been presented in a two dimensional Block member on elastic foundation for pedestrian walkway for reserving water inside. The minimum value for sum of shear forces is found when ${\times}1$ is 58.58 mm(30% of total span, 200mm), while the minimum deformation is located at ${\times}2=80mm$(70% of total span, 200 mm). In a modified model, When moving boundary condition(walkway foot loads) is located at ${\times}1$(=0 mm), the location of minimum principal stresses is found at 168 mm( 84% of span, 200 mm), in which the stress concentration due to the foot load is modeled as two layers of distributed loads(reactions of foundation modeled as springs). Consequently, zero deformed reservoirs for rainwater on the neutral axis (${\times}2=167mm$) has been determined in the modified model with three dimensional FEM analysis verifications.

Structural Optimization of Planar Truss using Quantum-inspired Evolution Algorithm (양자기반 진화알고리즘을 이용한 평면 트러스의 구조최적화)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • With the development of quantum computer, the development of the quantum-inspired search method applying the features of quantum mechanics and its application to engineering problems have emerged as one of the most interesting research topics. This algorithm stores information by using quantum-bit superposed basically by zero and one and approaches optional values through the quantum-gate operation. In this process, it can easily keep the balance between the two features of exploration and exploitation, and continually accumulates evolutionary information. This makes it differentiated from the existing search methods and estimated as a new algorithm as well. Thus, this study is to suggest a new minimum weight design technique by applying quantum-inspired search method into structural optimization of planar truss. In its mathematical model for optimum design, cost function is minimum weight and constraint function consists of the displacement and stress. To trace the accumulative process and gathering process of evolutionary information, the examples of 10-bar planar truss and 17-bar planar truss are chosen as the numerical examples, and their results are analyzed. The result of the structural optimized design in the numerical examples shows it has better result in minimum weight design, compared to those of the other existing search methods. It is also observed that more accurate optional values can be acquired as the result by accumulating evolutionary information. Besides, terminal condition is easily caught by representing Quantum-bit in probability.

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

The Fundamental Properties of Alkali-Activated Slag Cement (AASC) Mortar with Different Water-Binder Ratios and Fine Aggregate-Binder Ratios (물-결합재 비와 잔골재-결합재 비에 따른 알칼리 활성화 슬래그 모르타르의 기초특성)

  • Kim, Tae-Wan;Hahm, Hyung-Gil;Lee, Seong-Haeng;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2013
  • This study investigates the fundamental properties of the water-binder (W/B) ratio and fine aggregate-binder (F/B) ratio in the alkali-activated slag cement (AASC) mortar. The W/B ratios are 0.35, 0.40, 0.45, and 0.50, respectively. And then the F/B ratios varied between 1.00 and 3.00 at a constant increment of 0.25. The alkali activator was an 2M and 4M NaOH. The measured mechanical properties were compared, flow, compressive strength, absorption, ultra sonic velocity, and dry shrinkage. The flow, compressive strength, absorption, ultra sonic velocity and dry shrinkage decreased with increases W/B ratio. The compressive strength decreases with increase F/B ratio at same W/B ratio. Also, at certain value of F/B ratio significant increase in strength is observed. And S2 (river sand 2) had lower physical properties than S1 (river sand 1) due to the fineness modulus. The results of experiments indicated that the mechanical properties of AASC depended on the W/B ratio and F/B ratio. The optimum range for W/B ratios and F/B ratios of AASC is suggested that the F/B ratios by 1.75~2.50 at each W/B ratios. Moreover, the W/(B+F) ratios between 0.13 and 0.14 had a beneficial effect on the design of AASC mortar.

Mechanical Properties and Field Implementation of Floor Mortar Incorporated with VAE Polymer (VAE 폴리머를 이용한 모르타르 바닥재의 역학적 특성과 현작 적용성)

  • Bang, Jin-Wook;Lee, Sun-Mok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, the importance of the industrial warehouse floor has been increasing due to the development of the distribution and logistics industry. In this present study, an early-hardening polymer floor mortar which can compensate for the limitation of conventional cement based floor mortar regarding fluidity and long curing time was developed. In order to achieve the early-hardening of mortar characteristic ultra rapid hardening cement was used as binder. Four types of mixture proportions in accordance with the vinyl acetate ethylene(VAE) polymer contents with range from 10% to 20% and the other proto proportion without VAE polymer were designed. Mechanical experiments including the fluidity test, compressive strength test, bending test, bond test, and abrasion test were conducted for all mixture proportions. From the flow test result, it was possible to achieve the high flow with 250 mm by controlling the amount of superplasticizer. The incorporation of VAE polymer was found to affect the compressive strength reduction, however, the flexural strength was higher than that of the proto mixture, and it was evaluated to increase the compressive strength / flexural strength ratio. Moreover, at least 2.6 times higher bond strength and more than 4 times higher abrasion resistance were secured. From the mechanical experiments results, the optimum mixing ratio of the VAE polymer was determined to be 10%. As a result of application and monitoring, it shows that it has excellent resistance to cracking, discoloration, impact, and scratch as well as bond performance compared to the cement based floor mortar.

Objective Reduction Approach for Efficient Decision Making of Multi-Objective Optimum Service Life Management (다목적 최적화 기반 구조물 수명관리의 효율적 의사결정을 위한 목적감소 기법의 적용)

  • Kim, Sunyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.254-260
    • /
    • 2017
  • The service life of civil infrastructure needs to be maintained or extended through appropriate inspections and maintenance planning, which results from the optimization process. A multi-objective optimization process can lead to more rational and flexible trade-off solutions rather than a single-objective optimization for the service life management of civil infrastructure. Recent investigations on the service life management of civil infrastructure were generally based on minimizing the life-cycle cost analysis and maximizing the structural performance. Various objectives for service life management have been developed using novel probabilistic concepts and methods over the last few decades. On the other hand, an increase in the number of objectives in a multi-objective optimization problem can lead to difficulties in computational efficiency, visualization, and decision making. These difficulties can be overcome using the objective reduction approach to identify the redundant and essential objectives. As a result, the efficiency in computational efforts, visualization, and decision making can be improved. In this paper, the multi-objective optimization using the objective reduction approach was applied to the service life management of concrete bridges. The results showed that four initial objectives can be reduced by two objectives for the optimal service life management.

Vibration Control Effect of the Framed Building Structures according to the Stiffness Ratio of Exo-type Damping System and Damper Device Yield Ratio (Exo-type 감쇠시스템의 강성비와 감쇠장치의 항복비에 따른 라멘조 건물의 제진효과)

  • Hur, Moo-Won;Lee, Sang-Hyun;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, the vibration control effect of the Exo-type damping system was investigated by applying the Kagome dampers to 15-story and 20-story frame structure apartment. A new Exo-type damping system composed of the dampers and supporting column was proposed in the previous work and numerical analysis were performed to investigate the effects of optimum stiffness ratio between controlled structure and supporting column, the size of damper and yield ratio of the damper. The numerical analysis results of a structure with Exo-type damping system up to the third story showed that the stiffness ratio should be higher than 7.0 and the damper device yield ratio be at least 8.0% ($V_{damper}/V_{base\;shear$) to effectively reduce the base shear and the maximum drift of the uppermost story. When the Exo-type damping system was installed up to the fifth story, the stiffness ratio should be higher than 2.5 and damper device yield ratio needs to be at least 3.5% ($V_{damper}/V_{base\;shear$) for obtaining the target performance.

Study on Determination of Proper Pillar Width in Road Tunnel Design Stage (도로터널에서 적정한 필라폭 산정에 관한 연구)

  • Yang, Tae-Seon;Kim, Jae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.187-194
    • /
    • 2010
  • As the design of the pillar width (PW) of the parallel tunnels in downtown area, in which are located in plains zone with deep alluvium compared with mountain tunnels, is directly related with pre-compensation payment and costs of the underground area, it has to be planned as to keep minimum distance while securing the stability of the parallel tunnels. Although PW of downtown road tunnel in Korea is standardized as 1.5D(D: diameter of the tunnels), PW sometimes has to be reduced within 1.5D to adjust the tunnel lines to the city plan in the cases of the inlet and outlet of the tunnels. In this paper, the design and the analyses of optimum PW of the NATM type road tunnel in the downtown area are introduced. The relationship among the tunnel line planning and underground compensation fee, and ground characteristics are evaluated. In the determination of PW distance, the numerical analyses of underground road tunnels were performed, including the use of the strength decrease method and strength/stress ratio method. In the cases of inlet and outlet part of the tunnels where the stability of the pillars is poor due to contiguous construction of the parallel tunnels, the reinforcement methods are recommended for securing the stability. Numerical verification was performed for the reinforcement proposed.

Heavy-weight Impact Sound Characteristics of Floor Structure of a Small-Sized Wall-Slab Apartment Building having Joist Slab (장선슬래브를 갖는 소형평형 벽식구조 아파트 바닥구조의 중량충격음 특성)

  • Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In the present paper, as a way of reducing heavyweight impact sounds, in particular, among floor impact sounds which have come to the forefront as a social issue recently, a floor joist slab is proposed that is expected to bring an effect of reducing heavyweight impact sounds through a shift in the natural frequency by installing a floor joist on a flat-type slab to increase the rigidity of the floor slab, differently from the existing method that increases the thickness of floor slab, and the heavyweight impact sound characteristics depending on the floor joist height and interval are interpretively analyzed. As a result of the analysis, though a trend is shown where the sound pressure level decreases as the slab thickness of floor joist increases, and as no difference is shown when thickness is above a certain value, it is thought that there is a threshold for the effect of an increase in floor thickness on blockage of heavyweight impact sounds. Also, as an increase in floor rigidity resulting from an increase in the floor joist height and a decrease in the interval does not lead to a consistent increase in the performance of blocking heavyweight impact sounds, it is thought that a different floor joist height and interval should be applied to each type of house to expect optimum performance of blocking heavyweight impact sounds, and an increase of 100mm in the floor joist height or a decrease of about 100mm in the interval is expected to bring an effect of reducing heavyweight impact sounds by about 1dB to 2dB.